{"title":"Lethal and sublethal effects of flupyradifurone and cyantraniliprole on two neotropical stingless bee species.","authors":"Cristian Góngora-Gamboa, Esaú Ruiz-Sánchez, Roberto Zamora-Bustillos, Emanuel Hernández-Núñez, Horacio Ballina-Gómez","doi":"10.1007/s10646-024-02848-7","DOIUrl":null,"url":null,"abstract":"<p><p>Stingless bees are important pollinators in tropical regions, but their survival and behavior have been impacted by various factors, including exposure to insecticides. Here, we evaluated the lethal and sublethal effects of commercial formulations of two widely used insecticides, flupyradifurone (FPF formulation), and cyantraniliprole (CY formulation), on Melipona beecheii and Nannotrigona perilampoides. The study involved oral exposure of bees to insecticides, calculation of the lethal concentration (LC<sub>50</sub>) and the lethal time (LT<sub>50</sub>), and evaluation of walking and flight take-off activities. The LC<sub>50</sub> values showed that the largest bee, M. beecheii, was more sensitive than N. perilampoides to both insecticides and that the FPF formulation had faster lethal effects in both species (N. perilampoides, 9.6 h; M. beecheii, 5 h) compared to the effects of the CY formulation (N. perilampoides, 17 h; M. beecheii, 24.7 h). Sublethal concentrations (LC<sub>50/10</sub> and LC<sub>50/100</sub>) of both insecticides affected walking and flight take-off activities. After 6-24 h of exposure, both FPF and CY formulations significantly reduced the mean walking speed of N. perilampoides (0.962-1.402 cm/s) and M. beecheii (2.026-2.589 cm/s) compared to the control groups (N. perilampoides: 1.648-1.941 cm/s; M. beecheii: 2.759-3.471 cm/s). Additionally, the FPF and the CY formulation impaired individual flight take-off in both species. This study provides the first comprehensive evaluation of the lethal and sublethal effects of flupyradifurone and cyantraniliprole on M. beecheii and N. perilampoides, offering valuable information for future research on insecticide toxicity in stingless bees.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02848-7","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stingless bees are important pollinators in tropical regions, but their survival and behavior have been impacted by various factors, including exposure to insecticides. Here, we evaluated the lethal and sublethal effects of commercial formulations of two widely used insecticides, flupyradifurone (FPF formulation), and cyantraniliprole (CY formulation), on Melipona beecheii and Nannotrigona perilampoides. The study involved oral exposure of bees to insecticides, calculation of the lethal concentration (LC50) and the lethal time (LT50), and evaluation of walking and flight take-off activities. The LC50 values showed that the largest bee, M. beecheii, was more sensitive than N. perilampoides to both insecticides and that the FPF formulation had faster lethal effects in both species (N. perilampoides, 9.6 h; M. beecheii, 5 h) compared to the effects of the CY formulation (N. perilampoides, 17 h; M. beecheii, 24.7 h). Sublethal concentrations (LC50/10 and LC50/100) of both insecticides affected walking and flight take-off activities. After 6-24 h of exposure, both FPF and CY formulations significantly reduced the mean walking speed of N. perilampoides (0.962-1.402 cm/s) and M. beecheii (2.026-2.589 cm/s) compared to the control groups (N. perilampoides: 1.648-1.941 cm/s; M. beecheii: 2.759-3.471 cm/s). Additionally, the FPF and the CY formulation impaired individual flight take-off in both species. This study provides the first comprehensive evaluation of the lethal and sublethal effects of flupyradifurone and cyantraniliprole on M. beecheii and N. perilampoides, offering valuable information for future research on insecticide toxicity in stingless bees.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.