Isolation of anti-inflammatory and cytotoxic secondary metabolites from Valeriana phu and evaluation of their mechanisms of action.

IF 2.5 3区 医学 Q3 CHEMISTRY, MEDICINAL Fitoterapia Pub Date : 2025-01-06 DOI:10.1016/j.fitote.2025.106377
Cansel Çelik, Özge Doğa İdiş, Yağmur Özhan, Dilruba Tirpanlar, Naz Unal, Burcin Gungor, Başak Aru, Enise Ece Gurdal, Wolfgang Sippl, Hande Sipahi, Hasan Kırmızıbekmez
{"title":"Isolation of anti-inflammatory and cytotoxic secondary metabolites from Valeriana phu and evaluation of their mechanisms of action.","authors":"Cansel Çelik, Özge Doğa İdiş, Yağmur Özhan, Dilruba Tirpanlar, Naz Unal, Burcin Gungor, Başak Aru, Enise Ece Gurdal, Wolfgang Sippl, Hande Sipahi, Hasan Kırmızıbekmez","doi":"10.1016/j.fitote.2025.106377","DOIUrl":null,"url":null,"abstract":"<p><p>As a result of anti-inflammatory activity-guided fractionation, 16 secondary metabolites from the underground parts of Valeriana phu L. were obtained, including five new ones belonging to iridoid (1, 2, and 5), phenylpropanoid (6) and neolignan (7) chemical classes. Their structures were elucidated by 1D and 2D NMR analyses as well as HRESIMS. The in vitro anti-inflammatory activities of the extract, fractions and isolates were evaluated through NO inhibition assay on LPS-induced RAW 264.7 cells. Compounds 1-3, 7-9, 11, 13, and 16 which significantly inhibited the nitrite release (IC<sub>50</sub> 14.94-94.81 μM) were also assessed for their reducing capacity on TNF-α, IL-1β, IL-6, PGE2 and COX-2 production. Compounds 3, 8, and 16 inhibited LPS induced iNOS expression levels in Western blotting. Molecular docking studies for the active compounds targeting iNOS, TNF-α and COX-2 were also carried out. Moreover, compounds with remarkable anti-inflammatory activities were tested for their potential cytotoxicity against breast (MCF-7 and MDA-MB-231), glioblastoma (U87 and A172), pancreas (MIA PaCa-2 and PANC-1), hepatocellular (Mahlavu and Hep3B) cancer cell lines by WST-8. Compounds, 7, 8, and 16 showed significant cytotoxicity against A172 and PANC-1 cell lines (IC<sub>50</sub> 18.3-21.8 μM) via causing cell cycle arrest, especially in the G2/M phase and triggering the apoptotic pathway.</p>","PeriodicalId":12147,"journal":{"name":"Fitoterapia","volume":" ","pages":"106377"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fitoterapia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.fitote.2025.106377","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

As a result of anti-inflammatory activity-guided fractionation, 16 secondary metabolites from the underground parts of Valeriana phu L. were obtained, including five new ones belonging to iridoid (1, 2, and 5), phenylpropanoid (6) and neolignan (7) chemical classes. Their structures were elucidated by 1D and 2D NMR analyses as well as HRESIMS. The in vitro anti-inflammatory activities of the extract, fractions and isolates were evaluated through NO inhibition assay on LPS-induced RAW 264.7 cells. Compounds 1-3, 7-9, 11, 13, and 16 which significantly inhibited the nitrite release (IC50 14.94-94.81 μM) were also assessed for their reducing capacity on TNF-α, IL-1β, IL-6, PGE2 and COX-2 production. Compounds 3, 8, and 16 inhibited LPS induced iNOS expression levels in Western blotting. Molecular docking studies for the active compounds targeting iNOS, TNF-α and COX-2 were also carried out. Moreover, compounds with remarkable anti-inflammatory activities were tested for their potential cytotoxicity against breast (MCF-7 and MDA-MB-231), glioblastoma (U87 and A172), pancreas (MIA PaCa-2 and PANC-1), hepatocellular (Mahlavu and Hep3B) cancer cell lines by WST-8. Compounds, 7, 8, and 16 showed significant cytotoxicity against A172 and PANC-1 cell lines (IC50 18.3-21.8 μM) via causing cell cycle arrest, especially in the G2/M phase and triggering the apoptotic pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fitoterapia
Fitoterapia 医学-药学
CiteScore
5.80
自引率
2.90%
发文量
198
审稿时长
1.5 months
期刊介绍: Fitoterapia is a Journal dedicated to medicinal plants and to bioactive natural products of plant origin. It publishes original contributions in seven major areas: 1. Characterization of active ingredients of medicinal plants 2. Development of standardization method for bioactive plant extracts and natural products 3. Identification of bioactivity in plant extracts 4. Identification of targets and mechanism of activity of plant extracts 5. Production and genomic characterization of medicinal plants biomass 6. Chemistry and biochemistry of bioactive natural products of plant origin 7. Critical reviews of the historical, clinical and legal status of medicinal plants, and accounts on topical issues.
期刊最新文献
Three new diterpenes from the roots of Salvia miltiorrhiza and their cytotoxicity. Characterization, physicochemical properties, antioxidant activity and hypolipidemic activities of a polysaccharides from Lachnum YM40. Specnuezhenide: Comprehensive review of pharmacology, pharmacokinetics and ethnomedicinal uses. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Ginseng-Schisandra Chinensis decoction against asthma. Diterpenoid alkaloids from the roots of Aconitum bulbilliferum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1