{"title":"Comparative effects of arecoline, caffeine, and nicotine on transcription level in the nucleus accumbens of mice.","authors":"Shaofang Huang, Xinran Wang, Feifan Zhou","doi":"10.1016/j.ygeno.2025.110986","DOIUrl":null,"url":null,"abstract":"<p><p>Though widely consumed, current research on the neural mechanisms of arecoline, caffeine, and nicotine remains limited, and the similarities and differences of these substances on the nervous system are still not clear. This study used RNA-seq to analyze the gene expression in the nucleus accumbens (NAc) of mice, and compared the behavioral changes through open field and conditioned place preference (CPP), exploring the effects of different psychoactive substances at transcriptional and behavioral levels. Gene Ontology enrichment analysis revealed that nicotine and caffeine significantly alter biological processes related to synaptic function, and KEGG pathway analysis showed that the differentially expressed genes in the nicotine-treated group were significantly more enriched in pathways related to substance dependence, with arecoline showing the least enrichment. Furthermore, only acute caffeine treatment significantly increased mouse activity, and only nicotine induced CPP. These results provided a scientific basis for evaluating arecoline, caffeine, and nicotine on the nervous system.</p>","PeriodicalId":12521,"journal":{"name":"Genomics","volume":"117 2","pages":"110986"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ygeno.2025.110986","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Though widely consumed, current research on the neural mechanisms of arecoline, caffeine, and nicotine remains limited, and the similarities and differences of these substances on the nervous system are still not clear. This study used RNA-seq to analyze the gene expression in the nucleus accumbens (NAc) of mice, and compared the behavioral changes through open field and conditioned place preference (CPP), exploring the effects of different psychoactive substances at transcriptional and behavioral levels. Gene Ontology enrichment analysis revealed that nicotine and caffeine significantly alter biological processes related to synaptic function, and KEGG pathway analysis showed that the differentially expressed genes in the nicotine-treated group were significantly more enriched in pathways related to substance dependence, with arecoline showing the least enrichment. Furthermore, only acute caffeine treatment significantly increased mouse activity, and only nicotine induced CPP. These results provided a scientific basis for evaluating arecoline, caffeine, and nicotine on the nervous system.
期刊介绍:
Genomics is a forum for describing the development of genome-scale technologies and their application to all areas of biological investigation.
As a journal that has evolved with the field that carries its name, Genomics focuses on the development and application of cutting-edge methods, addressing fundamental questions with potential interest to a wide audience. Our aim is to publish the highest quality research and to provide authors with rapid, fair and accurate review and publication of manuscripts falling within our scope.