Isaac N. Treves, Aaron Kucyi, Madelynn Park, Tammi R. A. Kral, Simon B. Goldberg, Richard J. Davidson, Melissa Rosenkranz, Susan Whitfield-Gabrieli, John D. E. Gabrieli
{"title":"Connectome-Based Predictive Modeling of Trait Mindfulness","authors":"Isaac N. Treves, Aaron Kucyi, Madelynn Park, Tammi R. A. Kral, Simon B. Goldberg, Richard J. Davidson, Melissa Rosenkranz, Susan Whitfield-Gabrieli, John D. E. Gabrieli","doi":"10.1002/hbm.70123","DOIUrl":null,"url":null,"abstract":"<p>Trait mindfulness refers to one's disposition or tendency to pay attention to their experiences in the present moment, in a non-judgmental and accepting way. Trait mindfulness has been robustly associated with positive mental health outcomes, but its neural underpinnings are poorly understood. Prior resting-state fMRI studies have associated trait mindfulness with within- and between-network connectivity of the default-mode (DMN), fronto-parietal (FPN), and salience networks. However, it is unclear how generalizable the findings are, how they relate to different components of trait mindfulness, and how other networks and brain areas may be involved. To address these gaps, we conducted the largest resting-state fMRI study of trait mindfulness to-date, consisting of a pre-registered connectome-based predictive modeling analysis in 367 meditation-naïve adults across three samples collected at different sites. In the model-training dataset, we did not find connections that predicted overall trait mindfulness, but we identified neural models of two mindfulness subscales, <i>Acting with Awareness</i> and <i>Non-judging</i>. Models included both positive networks (sets of pairwise connections that positively predicted mindfulness with increasing connectivity) and negative networks, which showed the inverse relationship. The <i>Acting with Awareness</i> and <i>Non-judging</i> positive network models showed distinct network representations involving FPN and DMN, respectively. The negative network models, which overlapped significantly across subscales, involved connections across the whole brain with prominent involvement of somatomotor, visual and DMN networks. Only the negative networks generalized to predict subscale scores out-of-sample, and not across both test datasets. Predictions from both models were also negatively correlated with predictions from a well-established mind-wandering connectome model. We present preliminary neural evidence for a generalizable connectivity models of trait mindfulness based on specific affective and cognitive facets. However, the incomplete generalization of the models across all sites and scanners, limited stability of the models, as well as the substantial overlap between the models, underscores the difficulty of finding robust brain markers of mindfulness facets.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711207/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70123","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Trait mindfulness refers to one's disposition or tendency to pay attention to their experiences in the present moment, in a non-judgmental and accepting way. Trait mindfulness has been robustly associated with positive mental health outcomes, but its neural underpinnings are poorly understood. Prior resting-state fMRI studies have associated trait mindfulness with within- and between-network connectivity of the default-mode (DMN), fronto-parietal (FPN), and salience networks. However, it is unclear how generalizable the findings are, how they relate to different components of trait mindfulness, and how other networks and brain areas may be involved. To address these gaps, we conducted the largest resting-state fMRI study of trait mindfulness to-date, consisting of a pre-registered connectome-based predictive modeling analysis in 367 meditation-naïve adults across three samples collected at different sites. In the model-training dataset, we did not find connections that predicted overall trait mindfulness, but we identified neural models of two mindfulness subscales, Acting with Awareness and Non-judging. Models included both positive networks (sets of pairwise connections that positively predicted mindfulness with increasing connectivity) and negative networks, which showed the inverse relationship. The Acting with Awareness and Non-judging positive network models showed distinct network representations involving FPN and DMN, respectively. The negative network models, which overlapped significantly across subscales, involved connections across the whole brain with prominent involvement of somatomotor, visual and DMN networks. Only the negative networks generalized to predict subscale scores out-of-sample, and not across both test datasets. Predictions from both models were also negatively correlated with predictions from a well-established mind-wandering connectome model. We present preliminary neural evidence for a generalizable connectivity models of trait mindfulness based on specific affective and cognitive facets. However, the incomplete generalization of the models across all sites and scanners, limited stability of the models, as well as the substantial overlap between the models, underscores the difficulty of finding robust brain markers of mindfulness facets.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.