{"title":"Novel Genes Associated With Working Memory Are Identified by Combining Connectome, Transcriptome, and Genome","authors":"Xiaoyu Zhao, Ruochen Yin, Chuansheng Chen, Sebastian Markett, Xinrui Wang, Gui Xue, Qi Dong, Chunhui Chen","doi":"10.1002/hbm.70114","DOIUrl":null,"url":null,"abstract":"<p>Working memory (WM) plays a crucial role in human cognition. Previous candidate and genome-wide association studies have reported many genetic variations associated with WM. However, little research has examined genetic basis of WM by using transcriptome, even though it reflects gene function more directly than does the genome. Here we propose a new approach to exploring the genetic mechanisms of WM by integrating connectome, transcriptome, and genome data in a high-quality dataset comprising 481 Chinese healthy adults. First, relevance vector regression was used to define WM-related brain regions. Second, genes differentially expressed within these regions were identified using the Allen Human Brain Atlas (AHBA) dataset. Finally, two independent datasets were used to validate these genes' contributions to WM. With this method, we identified 24 novel genes and 20 of them were confirmed in the large-scale datasets of ABCD and UK Biobank. These novel genes were enriched in the cellular component of collagen-containing extracellular matrix and the CCL18 signaling pathway. Our method offers an effective approach to integrating multimodal gene discovery and demonstrates the superiority of expression data. This new method and the newly identified genes deserve more attention in the future.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705410/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70114","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Working memory (WM) plays a crucial role in human cognition. Previous candidate and genome-wide association studies have reported many genetic variations associated with WM. However, little research has examined genetic basis of WM by using transcriptome, even though it reflects gene function more directly than does the genome. Here we propose a new approach to exploring the genetic mechanisms of WM by integrating connectome, transcriptome, and genome data in a high-quality dataset comprising 481 Chinese healthy adults. First, relevance vector regression was used to define WM-related brain regions. Second, genes differentially expressed within these regions were identified using the Allen Human Brain Atlas (AHBA) dataset. Finally, two independent datasets were used to validate these genes' contributions to WM. With this method, we identified 24 novel genes and 20 of them were confirmed in the large-scale datasets of ABCD and UK Biobank. These novel genes were enriched in the cellular component of collagen-containing extracellular matrix and the CCL18 signaling pathway. Our method offers an effective approach to integrating multimodal gene discovery and demonstrates the superiority of expression data. This new method and the newly identified genes deserve more attention in the future.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.