Q241R mutation of Braf causes neurological abnormalities in a mouse model of cardio-facio-cutaneous syndrome, independent of developmental malformations.

IF 3.1 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Human molecular genetics Pub Date : 2025-01-08 DOI:10.1093/hmg/ddae196
Akira Moriya, Shin-Ichi Inoue, Fumihito Saitow, Moe Keitoku, Noato Suzuki, Etsumi Oike, Eriko Urano, Eiko Matsumoto, Hidenori Suzuki, Yoko Aoki, Hiroshi Ohnishi
{"title":"Q241R mutation of Braf causes neurological abnormalities in a mouse model of cardio-facio-cutaneous syndrome, independent of developmental malformations.","authors":"Akira Moriya, Shin-Ichi Inoue, Fumihito Saitow, Moe Keitoku, Noato Suzuki, Etsumi Oike, Eriko Urano, Eiko Matsumoto, Hidenori Suzuki, Yoko Aoki, Hiroshi Ohnishi","doi":"10.1093/hmg/ddae196","DOIUrl":null,"url":null,"abstract":"<p><p>Constitutively active mutants of BRAF cause cardio-facio-cutaneous (CFC) syndrome, characterized by growth and developmental defects, cardiac malformations, facial features, cutaneous manifestations, and mental retardation. An animal model of human CFC syndrome, the systemic BrafQ241R/+ mutant mouse, has been reported to exhibit multiple CFC syndrome-like phenotypes. In this study, we analyzed the effects of Braf mutations on neural function, separately from their effects on developmental processes. To this end, we generated Braf mutant mice expressing BRAFQ241R specifically in mature excitatory neurons (n-BrafQ241R/+). We found no growth retardation or cardiac malformations in n-BrafQ241R/+ mice, indicating normal development. Behavioral analysis revealed that n-BrafQ241R/+ mice exhibited reduced home cage activity and learning disability, which were similar to those of systemic BrafQ241R/+ mice. The active form of ERK was increased in the hippocampus of n-BrafQ241R/+ mice, whereas basal synaptic transmission and synaptic plasticity in hippocampal Schaffer collateral-CA1 synapses seems to be normal. Transcriptome analysis of the hippocampal tissue revealed significant changes in the expression of genes involved in regulation of the RAS/mitogen-activated protein kinase (MAPK) signaling pathway, synaptic function and memory formation. These data suggest that the neuronal dysfunction observed in the systemic CFC mouse model is due to the disruption of homeostasis of the RAS/MAPK signaling pathway by the activated Braf mutant after maturation, rather than abnormal development of the brain. A similar mechanism may be possible in human CFC syndrome.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddae196","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Constitutively active mutants of BRAF cause cardio-facio-cutaneous (CFC) syndrome, characterized by growth and developmental defects, cardiac malformations, facial features, cutaneous manifestations, and mental retardation. An animal model of human CFC syndrome, the systemic BrafQ241R/+ mutant mouse, has been reported to exhibit multiple CFC syndrome-like phenotypes. In this study, we analyzed the effects of Braf mutations on neural function, separately from their effects on developmental processes. To this end, we generated Braf mutant mice expressing BRAFQ241R specifically in mature excitatory neurons (n-BrafQ241R/+). We found no growth retardation or cardiac malformations in n-BrafQ241R/+ mice, indicating normal development. Behavioral analysis revealed that n-BrafQ241R/+ mice exhibited reduced home cage activity and learning disability, which were similar to those of systemic BrafQ241R/+ mice. The active form of ERK was increased in the hippocampus of n-BrafQ241R/+ mice, whereas basal synaptic transmission and synaptic plasticity in hippocampal Schaffer collateral-CA1 synapses seems to be normal. Transcriptome analysis of the hippocampal tissue revealed significant changes in the expression of genes involved in regulation of the RAS/mitogen-activated protein kinase (MAPK) signaling pathway, synaptic function and memory formation. These data suggest that the neuronal dysfunction observed in the systemic CFC mouse model is due to the disruption of homeostasis of the RAS/MAPK signaling pathway by the activated Braf mutant after maturation, rather than abnormal development of the brain. A similar mechanism may be possible in human CFC syndrome.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Human molecular genetics
Human molecular genetics 生物-生化与分子生物学
CiteScore
6.90
自引率
2.90%
发文量
294
审稿时长
2-4 weeks
期刊介绍: Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include: the molecular basis of human genetic disease developmental genetics cancer genetics neurogenetics chromosome and genome structure and function therapy of genetic disease stem cells in human genetic disease and therapy, including the application of iPS cells genome-wide association studies mouse and other models of human diseases functional genomics computational genomics In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.
期刊最新文献
Diminished DNA binding affinity of DMRT1 caused by heterozygous DM domain mutations is a cause of male infertility. Q241R mutation of Braf causes neurological abnormalities in a mouse model of cardio-facio-cutaneous syndrome, independent of developmental malformations. The evaluation of targeted exome sequencing of candidate genes in a Han Chinese population with primary open-angle glaucoma. Transcriptomic analysis of human cartilage identified potential therapeutic targets for hip osteoarthritis. A TAF11 variant contributes to non-syndromic cleft lip only through modulating neural crest cell migration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1