Jingyi Huang, Ming Liu, Andrew Furey, Proton Rahman, Guangju Zhai
{"title":"Transcriptomic analysis of human cartilage identified potential therapeutic targets for hip osteoarthritis.","authors":"Jingyi Huang, Ming Liu, Andrew Furey, Proton Rahman, Guangju Zhai","doi":"10.1093/hmg/ddae200","DOIUrl":null,"url":null,"abstract":"<p><p>Cartilage degradation is the hallmark of osteoarthritis (OA). The purpose of this study was to identify and validate differentially expressed genes (DEGs) in human articular cartilage that could serve as potential therapeutic targets for hip OA. We performed transcriptomic profiling in a discovery cohort (12 OA-free and 72 hip OA-affected cartilage) and identified 179 DEGs between OA-free and OA-affected cartilage after correcting for multiple testing (P < 2.97 × 10-6). Pathway and network analyses found eight hub genes to be associated with hip OA (ASPN, COL1A2, MXRA5, P3H1, PCOLCE, SDC1, SPARC, and TLR2), which were all confirmed using qPCR in a validation cohort (36 OA-free and 62 hip OA-affected cartilage) (P < 6.25 × 10-3). Our data showed that dysregulation of extracellular matrix formation and imbalance in the proportion of collagen chains may contribute to the development of hip OA, and SDC1 could be a promising potential therapeutic target. These findings provided a better understanding of the molecular mechanisms for hip OA and may assist in developing targeted treatment strategies.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddae200","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cartilage degradation is the hallmark of osteoarthritis (OA). The purpose of this study was to identify and validate differentially expressed genes (DEGs) in human articular cartilage that could serve as potential therapeutic targets for hip OA. We performed transcriptomic profiling in a discovery cohort (12 OA-free and 72 hip OA-affected cartilage) and identified 179 DEGs between OA-free and OA-affected cartilage after correcting for multiple testing (P < 2.97 × 10-6). Pathway and network analyses found eight hub genes to be associated with hip OA (ASPN, COL1A2, MXRA5, P3H1, PCOLCE, SDC1, SPARC, and TLR2), which were all confirmed using qPCR in a validation cohort (36 OA-free and 62 hip OA-affected cartilage) (P < 6.25 × 10-3). Our data showed that dysregulation of extracellular matrix formation and imbalance in the proportion of collagen chains may contribute to the development of hip OA, and SDC1 could be a promising potential therapeutic target. These findings provided a better understanding of the molecular mechanisms for hip OA and may assist in developing targeted treatment strategies.
期刊介绍:
Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include:
the molecular basis of human genetic disease
developmental genetics
cancer genetics
neurogenetics
chromosome and genome structure and function
therapy of genetic disease
stem cells in human genetic disease and therapy, including the application of iPS cells
genome-wide association studies
mouse and other models of human diseases
functional genomics
computational genomics
In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.