Zeribe C Nwosu, Heather Giza, Maya Nassif, Verodia Charlestin, Rosa E Menjivar, Daeho Kim, Samantha B Kemp, Peter Sajjakulnukit, Anthony Andren, Li Zhang, William Km Lai, Ian Loveless, Nina G Steele, Jiantao Hu, Biao Hu, Shaomeng Wang, Marina Pasca di Magliano, Costas A Lyssiotis
{"title":"Multi-dimensional analyses identify genes of high priority for pancreatic cancer research.","authors":"Zeribe C Nwosu, Heather Giza, Maya Nassif, Verodia Charlestin, Rosa E Menjivar, Daeho Kim, Samantha B Kemp, Peter Sajjakulnukit, Anthony Andren, Li Zhang, William Km Lai, Ian Loveless, Nina G Steele, Jiantao Hu, Biao Hu, Shaomeng Wang, Marina Pasca di Magliano, Costas A Lyssiotis","doi":"10.1172/jci.insight.174264","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) is a drug resistant and lethal cancer. Identification of the genes that consistently show altered expression across patients' cohorts can expose effective therapeutic targets and strategies. To identify such genes, we separately analyzed five human PDAC microarray datasets. We defined genes as 'consistent' if upregulated or downregulated in ≥ 4 datasets (adjusted P<0.05). The genes were subsequently queried in additional datasets, including single-cell RNA-sequencing data, and we analyzed their pathway enrichment, tissue-specificity, essentiality for cell viability, association with cancer features e.g., tumor subtype, proliferation, metastasis and poor survival outcome. We identified 2,010 consistently upregulated and 1,928 downregulated genes of which >50%, to our knowledge, were uncharacterized in PDAC. These genes spanned multiple processes, including cell cycle, immunity, transport, metabolism, signaling and transcriptional/epigenetic regulation - cell cycle and glycolysis being the most altered. Several upregulated genes correlated with cancer features, and their suppression impaired PDAC cell viability in prior CRISPR/Cas9 and RNA interference screens. Further, the upregulated genes predicted sensitivity to bromodomain and extraterminal (epigenetic) protein inhibition, which, in combination with gemcitabine, disrupted amino acid metabolism and in vivo tumor growth. Our results highlight genes for further studies in the quest for PDAC mechanisms, therapeutic targets and biomarkers.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.174264","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a drug resistant and lethal cancer. Identification of the genes that consistently show altered expression across patients' cohorts can expose effective therapeutic targets and strategies. To identify such genes, we separately analyzed five human PDAC microarray datasets. We defined genes as 'consistent' if upregulated or downregulated in ≥ 4 datasets (adjusted P<0.05). The genes were subsequently queried in additional datasets, including single-cell RNA-sequencing data, and we analyzed their pathway enrichment, tissue-specificity, essentiality for cell viability, association with cancer features e.g., tumor subtype, proliferation, metastasis and poor survival outcome. We identified 2,010 consistently upregulated and 1,928 downregulated genes of which >50%, to our knowledge, were uncharacterized in PDAC. These genes spanned multiple processes, including cell cycle, immunity, transport, metabolism, signaling and transcriptional/epigenetic regulation - cell cycle and glycolysis being the most altered. Several upregulated genes correlated with cancer features, and their suppression impaired PDAC cell viability in prior CRISPR/Cas9 and RNA interference screens. Further, the upregulated genes predicted sensitivity to bromodomain and extraterminal (epigenetic) protein inhibition, which, in combination with gemcitabine, disrupted amino acid metabolism and in vivo tumor growth. Our results highlight genes for further studies in the quest for PDAC mechanisms, therapeutic targets and biomarkers.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.