CD4+ T helper 2 cell-macrophage crosstalk induces IL-24-mediated breast cancer suppression.

IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL JCI insight Pub Date : 2025-01-09 DOI:10.1172/jci.insight.180962
Bo Wang, Yun Xia, Can Zhou, Yuhan Zeng, Heehwa G Son, Shadmehr Demehri
{"title":"CD4+ T helper 2 cell-macrophage crosstalk induces IL-24-mediated breast cancer suppression.","authors":"Bo Wang, Yun Xia, Can Zhou, Yuhan Zeng, Heehwa G Son, Shadmehr Demehri","doi":"10.1172/jci.insight.180962","DOIUrl":null,"url":null,"abstract":"<p><p>CD4+ T cells contribute to antitumor immunity and are implicated in the efficacy of cancer immunotherapies. In particular, CD4+ T helper 2 (Th2) cells were recently found to block spontaneous breast carcinogenesis. However, the antitumor potential of Th2 cells in targeting established breast cancer remains uncertain. Herein, we demonstrate that Th2 cells induced by the topical calcipotriol/thymic stromal lymphopoietin cytokine axis suppressed the growth of established mammary tumors in mice. Interleukin-24 (IL-24), an anticancer cytokine, was highly upregulated in macrophages infiltrating calcipotriol-treated mammary tumors. Macrophages expressed IL-24 in response to IL-4 signaling in combination with Toll-like receptor 4 (TLR4) agonists (e.g., HMGB1) in vitro. Calcipotriol treatment significantly increased HMGB1 release by tumor cells in vivo. CD4+ T cell depletion reduced HMGB1 and IL-24 expression, reversing calcipotriol's therapeutic efficacy. Macrophage depletion and TLR4 inhibition also reduced the therapeutic efficacy of calcipotriol. Importantly, calcipotriol treatment failed to control mammary tumors lacking the IL-24 receptor on tumor cells. Collectively, our findings reveal that Th2 cell-macrophage crosstalk leads to IL-24-mediated tumor cell death, highlighting a promising therapeutic strategy to tackle breast cancer.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":"10 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721301/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.180962","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

CD4+ T cells contribute to antitumor immunity and are implicated in the efficacy of cancer immunotherapies. In particular, CD4+ T helper 2 (Th2) cells were recently found to block spontaneous breast carcinogenesis. However, the antitumor potential of Th2 cells in targeting established breast cancer remains uncertain. Herein, we demonstrate that Th2 cells induced by the topical calcipotriol/thymic stromal lymphopoietin cytokine axis suppressed the growth of established mammary tumors in mice. Interleukin-24 (IL-24), an anticancer cytokine, was highly upregulated in macrophages infiltrating calcipotriol-treated mammary tumors. Macrophages expressed IL-24 in response to IL-4 signaling in combination with Toll-like receptor 4 (TLR4) agonists (e.g., HMGB1) in vitro. Calcipotriol treatment significantly increased HMGB1 release by tumor cells in vivo. CD4+ T cell depletion reduced HMGB1 and IL-24 expression, reversing calcipotriol's therapeutic efficacy. Macrophage depletion and TLR4 inhibition also reduced the therapeutic efficacy of calcipotriol. Importantly, calcipotriol treatment failed to control mammary tumors lacking the IL-24 receptor on tumor cells. Collectively, our findings reveal that Th2 cell-macrophage crosstalk leads to IL-24-mediated tumor cell death, highlighting a promising therapeutic strategy to tackle breast cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CD4+ T辅助2细胞-巨噬细胞串扰诱导il -24介导的乳腺癌抑制
CD4+ T细胞有助于抗肿瘤免疫,并与癌症免疫治疗的疗效有关。特别是,CD4+ T辅助2 (Th2)细胞最近被发现可以阻止自发性乳腺癌的发生。然而,Th2细胞靶向乳腺癌的抗肿瘤潜力仍不确定。本研究表明,局部钙三醇/胸腺基质淋巴生成素细胞因子轴诱导的Th2细胞可抑制小鼠乳腺肿瘤的生长。白细胞介素-24 (IL-24)是一种抗癌细胞因子,在钙化三醇治疗的乳腺肿瘤中浸润的巨噬细胞中高度上调。巨噬细胞联合toll样受体4 (TLR4)激动剂(如HMGB1)表达IL-24以响应IL-4信号。钙化三醇治疗显著增加肿瘤细胞体内HMGB1的释放。CD4+ T细胞耗竭降低HMGB1和IL-24的表达,逆转钙化三醇的治疗效果。巨噬细胞耗竭和TLR4抑制也降低了钙三醇的治疗效果。重要的是,钙化三醇治疗不能控制肿瘤细胞上缺乏IL-24受体的乳腺肿瘤。总的来说,我们的研究结果揭示了Th2细胞-巨噬细胞串扰导致il -24介导的肿瘤细胞死亡,突出了一种有前途的治疗乳腺癌的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JCI insight
JCI insight Medicine-General Medicine
CiteScore
13.70
自引率
1.20%
发文量
543
审稿时长
6 weeks
期刊介绍: JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.
期刊最新文献
Mapping cell diversity and dynamics in inflammatory temporomandibular joint osteoarthritis with pain at single-cell resolution. Prenatal alcohol exposure is associated with altered feto-placental blood flow and sex-specific placental changes. Regulation of lung progenitor plasticity and repair by fatty acid oxidation. Ablation of Htra1 leads to sub-RPE deposits and photoreceptor abnormalities. AURKB inhibition induces rhabdomyosarcoma apoptosis and ferroptosis through NPM1/SP1/ACSL5 axis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1