Recent progresses and perspectives of polyethylene biodegradation by bacteria and fungi: A review.

IF 3.5 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Journal of contaminant hydrology Pub Date : 2025-01-06 DOI:10.1016/j.jconhyd.2025.104499
Yun Kong, Renjuan Wang, Qingyun Zhou, Jiamiao Li, Yimeng Fan, Qi Chen
{"title":"Recent progresses and perspectives of polyethylene biodegradation by bacteria and fungi: A review.","authors":"Yun Kong, Renjuan Wang, Qingyun Zhou, Jiamiao Li, Yimeng Fan, Qi Chen","doi":"10.1016/j.jconhyd.2025.104499","DOIUrl":null,"url":null,"abstract":"<p><p>Plastics pollution has become a serious threat to the people and environment due to the mass production, unreasonable disposal and continuous pollution. Polyethylene (PE), one of the most utilized plastics all over the world, is considered as a highly recalcitrant environmental destruction problem on account of strong hydrophobicity and high molecular weight. Therefore, it is urgently necessary to seek economical and efficient treatment and disposal methods for PE. Considering microorganisms can use various carbon sources for anabolism, they are recognized to have great potential in the biodegradation of microplastics including PE. From this point of view, the present review concentrates on providing information regarding the current status of PE biodegradation microorganisms (bacteria and fungi), and the influencing factors such as PE characteristics, cellular surface hydrophobicity, physical treatments, chemicals addition, as well as environmental conditions for biodegradation are thoroughly discussed. Furthermore, the possible biodegradation mechanisms for PE involve the biofilm formation, biodeterioration, fragmentation, assimilation, and mineralization are elucidated in detail. Finally, the future research directions and application prospects of microbial degradation are prospected in this review. It is expected to provide reference and guidance for PE biodegradation and their potential applications in real contaminated sites.</p>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"104499"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jconhyd.2025.104499","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plastics pollution has become a serious threat to the people and environment due to the mass production, unreasonable disposal and continuous pollution. Polyethylene (PE), one of the most utilized plastics all over the world, is considered as a highly recalcitrant environmental destruction problem on account of strong hydrophobicity and high molecular weight. Therefore, it is urgently necessary to seek economical and efficient treatment and disposal methods for PE. Considering microorganisms can use various carbon sources for anabolism, they are recognized to have great potential in the biodegradation of microplastics including PE. From this point of view, the present review concentrates on providing information regarding the current status of PE biodegradation microorganisms (bacteria and fungi), and the influencing factors such as PE characteristics, cellular surface hydrophobicity, physical treatments, chemicals addition, as well as environmental conditions for biodegradation are thoroughly discussed. Furthermore, the possible biodegradation mechanisms for PE involve the biofilm formation, biodeterioration, fragmentation, assimilation, and mineralization are elucidated in detail. Finally, the future research directions and application prospects of microbial degradation are prospected in this review. It is expected to provide reference and guidance for PE biodegradation and their potential applications in real contaminated sites.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细菌和真菌降解聚乙烯的研究进展及展望
由于塑料的大量生产、不合理的处理和持续的污染,塑料污染已经成为对人类和环境的严重威胁。聚乙烯(PE)是世界上应用最广泛的塑料之一,由于其强疏水性和高分子量,被认为是一个高度顽固的环境破坏问题。因此,迫切需要寻求经济高效的PE处理处置方法。考虑到微生物可以利用各种碳源进行合成代谢,它们在包括PE在内的微塑料的生物降解中具有巨大的潜力。从这一角度出发,本文综述了PE生物降解微生物(细菌和真菌)的研究现状,并对PE特性、细胞表面疏水性、物理处理、化学添加以及生物降解的环境条件等影响因素进行了深入的讨论。此外,还详细阐述了PE的生物降解机制,包括生物膜形成、生物降解、破碎、同化和矿化。最后,对微生物降解的未来研究方向和应用前景进行了展望。期望为PE的生物降解及其在实际污染场地的潜在应用提供参考和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of contaminant hydrology
Journal of contaminant hydrology 环境科学-地球科学综合
CiteScore
6.80
自引率
2.80%
发文量
129
审稿时长
68 days
期刊介绍: The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide). The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.
期刊最新文献
Quantification of denitrification rate in shallow groundwater using the single-well, push-pull test technique. Influence of wettability on water retention curves in unconsolidated porous media. Identifying dissolved reactive phosphorus sources in agricultural runoff and leachate using phosphate oxygen isotopes. Recent progresses and perspectives of polyethylene biodegradation by bacteria and fungi: A review. AQuA-P: A machine learning-based tool for water quality assessment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1