{"title":"Scaling of quantitative cardiomyocyte properties in the left ventricle of different mammalian species.","authors":"Tanja Kloock, David J Jörg, Christian Mühlfeld","doi":"10.1242/jeb.249489","DOIUrl":null,"url":null,"abstract":"<p><p>Small mammals have a higher heart rate and, relative to body mass (Mb), a higher metabolic rate than large mammals. In contrast, heart weight and stroke volume scale linearly with Mb. With mitochondria filling approximately 50% of a shrew cardiomyocyte - space unavailable for myofibrils - it is unclear how small mammals generate enough contractile force to pump blood into circulation. Here, we investigated whether the total number or volume of cardiomyocytes in the left ventricle compensates for allometry-related volume shifts of cardiac mitochondria and myofibrils. Through statistical analysis of data from 25 studies with 19 different mammalian species with Mb spanning seven orders of magnitude (2.2 g to 920 kg), we determined how number, volume density and total volume of cardiomyocytes, mitochondria and myofibrils in the left ventricle depend on Mb. We found that these biological variables follow scaling relationships and are proportional to a power b of Mb. The number [b=1.02 (95% CI: 0.89, 1.14); t-test for b=1: P=0.72] and volume [b=0.95 (95% CI: 0.89, 1.03); t-test for b=1: P=0.18] of cardiomyocytes in the left ventricle increases linearly with increasing Mb. In cardiomyocytes, volume density of mitochondria decreases [b=-0.056 (95% CI: -0.08, -0.04); t-test for b=0: P<0.0001] and that of myofibrils increases [b=0.024 (95%CI: 0.01, 0.04); t-test for b=0: P<0.01] with increasing Mb. Thus, the number or volume of left ventricular cardiomyocytes does not compensate for the higher heart rate and specific metabolic rate of small mammals although a higher mitochondrial and lower myofibrillar volume per cardiomyocyte are present.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":"228 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744323/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249489","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Small mammals have a higher heart rate and, relative to body mass (Mb), a higher metabolic rate than large mammals. In contrast, heart weight and stroke volume scale linearly with Mb. With mitochondria filling approximately 50% of a shrew cardiomyocyte - space unavailable for myofibrils - it is unclear how small mammals generate enough contractile force to pump blood into circulation. Here, we investigated whether the total number or volume of cardiomyocytes in the left ventricle compensates for allometry-related volume shifts of cardiac mitochondria and myofibrils. Through statistical analysis of data from 25 studies with 19 different mammalian species with Mb spanning seven orders of magnitude (2.2 g to 920 kg), we determined how number, volume density and total volume of cardiomyocytes, mitochondria and myofibrils in the left ventricle depend on Mb. We found that these biological variables follow scaling relationships and are proportional to a power b of Mb. The number [b=1.02 (95% CI: 0.89, 1.14); t-test for b=1: P=0.72] and volume [b=0.95 (95% CI: 0.89, 1.03); t-test for b=1: P=0.18] of cardiomyocytes in the left ventricle increases linearly with increasing Mb. In cardiomyocytes, volume density of mitochondria decreases [b=-0.056 (95% CI: -0.08, -0.04); t-test for b=0: P<0.0001] and that of myofibrils increases [b=0.024 (95%CI: 0.01, 0.04); t-test for b=0: P<0.01] with increasing Mb. Thus, the number or volume of left ventricular cardiomyocytes does not compensate for the higher heart rate and specific metabolic rate of small mammals although a higher mitochondrial and lower myofibrillar volume per cardiomyocyte are present.
期刊介绍:
Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.