Reagan M Tompkins, Takashi Fujiwara, Eric M Schrauben, Lorna P Browne, Joost van Schuppen, Sally-Ann Clur, Richard M Friesen, Erin K Englund, Alex J Barker, Pim van Ooij
{"title":"Third trimester fetal 4D flow MRI with motion correction.","authors":"Reagan M Tompkins, Takashi Fujiwara, Eric M Schrauben, Lorna P Browne, Joost van Schuppen, Sally-Ann Clur, Richard M Friesen, Erin K Englund, Alex J Barker, Pim van Ooij","doi":"10.1002/mrm.30411","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To correct maternal breathing and fetal bulk motion during fetal 4D flow MRI.</p><p><strong>Methods: </strong>A Doppler-ultrasound fetal cardiac-gated free-running 4D flow acquisition was corrected post hoc for maternal respiratory and fetal bulk motion in separate automated steps, with optional manual intervention to assess and limit fetal motion artifacts. Compressed-sensing reconstruction with a data outlier rejection algorithm was adapted from previous work. Pre- and post-motion correction comparison included qualitative visibility of vasculature on phase-contrast MR angiograms (five-point Likert scale), conservation of mass of the aortic isthmus, ductus arteriosus, and descending aorta, and coefficient of variation of flow along the descending aorta.</p><p><strong>Results: </strong>Twenty-nine third trimester acquisitions were performed for 15 healthy fetuses and two patients with postnatally confirmed aortic coarctation during a single examination for each participant. Only 15/27 (56%) of all volunteers and 1/2 (50%) of all patient precorrection acquisitions were suitable for flow analysis. Motion correction recovered eight \"failed\" acquisitions, including one patient, with 24/29 (83%) suitable for flow analysis. In the 15 viable uncorrected volunteer acquisitions, motion correction improved phase-contrast MR angiograms visibility significantly in the ductus arteriosus (from 4.0 to 4.3, p = 0.04) and aortic arch (3.7 to 4.0, p = 0.03). Motion correction improved conservation of mass to a median (interquartile range) percent difference of 5% (9%) from 14% (24%) with improvement shown in 14/15 acquisitions (p = 0.002), whereas coefficient of variation changes were not significantly different (uncorrected: 0.15 (0.09), corrected: 0.11 (0.09), p = 0.3).</p><p><strong>Conclusions: </strong>Motion correction compensated for maternal and fetal motion in fetal 4D flow MRI data, improving image quality and conservation of mass.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30411","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To correct maternal breathing and fetal bulk motion during fetal 4D flow MRI.
Methods: A Doppler-ultrasound fetal cardiac-gated free-running 4D flow acquisition was corrected post hoc for maternal respiratory and fetal bulk motion in separate automated steps, with optional manual intervention to assess and limit fetal motion artifacts. Compressed-sensing reconstruction with a data outlier rejection algorithm was adapted from previous work. Pre- and post-motion correction comparison included qualitative visibility of vasculature on phase-contrast MR angiograms (five-point Likert scale), conservation of mass of the aortic isthmus, ductus arteriosus, and descending aorta, and coefficient of variation of flow along the descending aorta.
Results: Twenty-nine third trimester acquisitions were performed for 15 healthy fetuses and two patients with postnatally confirmed aortic coarctation during a single examination for each participant. Only 15/27 (56%) of all volunteers and 1/2 (50%) of all patient precorrection acquisitions were suitable for flow analysis. Motion correction recovered eight "failed" acquisitions, including one patient, with 24/29 (83%) suitable for flow analysis. In the 15 viable uncorrected volunteer acquisitions, motion correction improved phase-contrast MR angiograms visibility significantly in the ductus arteriosus (from 4.0 to 4.3, p = 0.04) and aortic arch (3.7 to 4.0, p = 0.03). Motion correction improved conservation of mass to a median (interquartile range) percent difference of 5% (9%) from 14% (24%) with improvement shown in 14/15 acquisitions (p = 0.002), whereas coefficient of variation changes were not significantly different (uncorrected: 0.15 (0.09), corrected: 0.11 (0.09), p = 0.3).
Conclusions: Motion correction compensated for maternal and fetal motion in fetal 4D flow MRI data, improving image quality and conservation of mass.
期刊介绍:
Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.