Predicting purification process fit of monoclonal antibodies using machine learning.

IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL mAbs Pub Date : 2025-12-01 Epub Date: 2025-01-09 DOI:10.1080/19420862.2024.2439988
Andrew Maier, Minjeong Cha, Sean Burgess, Amy Wang, Carlos Cuellar, Soo Kim, Neeraja Sundar Rajan, Josephine Neyyan, Rituparna Sengupta, Kelly O'Connor, Nicole Ott, Ambrose Williams
{"title":"Predicting purification process fit of monoclonal antibodies using machine learning.","authors":"Andrew Maier, Minjeong Cha, Sean Burgess, Amy Wang, Carlos Cuellar, Soo Kim, Neeraja Sundar Rajan, Josephine Neyyan, Rituparna Sengupta, Kelly O'Connor, Nicole Ott, Ambrose Williams","doi":"10.1080/19420862.2024.2439988","DOIUrl":null,"url":null,"abstract":"<p><p>In early-stage development of therapeutic monoclonal antibodies, assessment of the viability and ease of their purification typically requires extensive experimentation. However, the work required for upstream protein expression and downstream purification development often conflicts with timeline pressures and material constraints, limiting the number of molecules and process conditions that can reasonably be assessed. Recently, high-throughput batch-binding screen data along with improved molecular descriptors have enabled development of robust quantitative structure-property relationship (QSPR) models that predict monoclonal antibody chromatographic binding behavior from the amino acid sequence. Here, we describe a QSPR strategy for <i>in silico</i> monoclonal antibody purification process fit assessment. Principal Component Analysis is applied to extract a one-dimensional basis for comparison of molecular chromatographic binding behavior from multi-dimensional high-throughput batch-binding screen data. Kernel Ridge Regression is used to predict the first principal component for new molecular sequences. This workflow is demonstrated with a set of 97 monoclonal antibodies for five chromatography resins in two salt types across a range of pH and salt concentrations. Model development benchmarks four descriptor sets from biophysical structural models and protein language models. The investigation illustrates the value QSPR models can provide to purification process fit assessment, and selection of resins and operating conditions from sequence alone.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"17 1","pages":"2439988"},"PeriodicalIF":5.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mAbs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2024.2439988","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

In early-stage development of therapeutic monoclonal antibodies, assessment of the viability and ease of their purification typically requires extensive experimentation. However, the work required for upstream protein expression and downstream purification development often conflicts with timeline pressures and material constraints, limiting the number of molecules and process conditions that can reasonably be assessed. Recently, high-throughput batch-binding screen data along with improved molecular descriptors have enabled development of robust quantitative structure-property relationship (QSPR) models that predict monoclonal antibody chromatographic binding behavior from the amino acid sequence. Here, we describe a QSPR strategy for in silico monoclonal antibody purification process fit assessment. Principal Component Analysis is applied to extract a one-dimensional basis for comparison of molecular chromatographic binding behavior from multi-dimensional high-throughput batch-binding screen data. Kernel Ridge Regression is used to predict the first principal component for new molecular sequences. This workflow is demonstrated with a set of 97 monoclonal antibodies for five chromatography resins in two salt types across a range of pH and salt concentrations. Model development benchmarks four descriptor sets from biophysical structural models and protein language models. The investigation illustrates the value QSPR models can provide to purification process fit assessment, and selection of resins and operating conditions from sequence alone.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
mAbs
mAbs 工程技术-仪器仪表
CiteScore
10.70
自引率
11.30%
发文量
77
审稿时长
6-12 weeks
期刊介绍: mAbs is a multi-disciplinary journal dedicated to the art and science of antibody research and development. The journal has a strong scientific and medical focus, but also strives to serve a broader readership. The articles are thus of interest to scientists, clinical researchers, and physicians, as well as the wider mAb community, including our readers involved in technology transfer, legal issues, investment, strategic planning and the regulation of therapeutics.
期刊最新文献
T cell margination: investigating the detour of T cells following forimtamig treatment in humanized mice. Analysis of how antigen mutations disrupt antibody binding interactions toward enabling rapid and reliable antibody repurposing. Antibodies to watch in 2025. Online native hydrophobic interaction chromatography-mass spectrometry of antibody-drug conjugates. Prediction of protein biophysical traits from limited data: a case study on nanobody thermostability through NanoMelt.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1