New Insights into the Modifications and Bioactivities of Indole-3-Carboxaldehyde and its Derivatives as a Potential Scaffold for Drug Design: A Mini-Review.

IF 3.3 3区 医学 Q2 CHEMISTRY, MEDICINAL Mini reviews in medicinal chemistry Pub Date : 2025-01-07 DOI:10.2174/0113895575351704241120060746
Nuhu Abdullahi Mukhtar, Mustapha Suleiman, Helmi Mohammed Al-Maqtari, Kumitaa Theva Das, Ajmal R Bhat, Joazaizulfazli Jamalis
{"title":"New Insights into the Modifications and Bioactivities of Indole-3-Carboxaldehyde and its Derivatives as a Potential Scaffold for Drug Design: A Mini-Review.","authors":"Nuhu Abdullahi Mukhtar, Mustapha Suleiman, Helmi Mohammed Al-Maqtari, Kumitaa Theva Das, Ajmal R Bhat, Joazaizulfazli Jamalis","doi":"10.2174/0113895575351704241120060746","DOIUrl":null,"url":null,"abstract":"<p><p>Indole, a ubiquitous structural motif in bioactive compounds, has played a pivotal role in drug discovery. Among indole derivatives, indole-3-carboxaldehyde (I3A) has emerged as a particularly promising scaffold for the development of therapeutic agents. This review delves into the recent advancements in the chemical modification of I3A and its derivatives, highlighting their potential applications in various therapeutic areas. I3A derivatives have demonstrated a wide range of biological activities, including anti-inflammatory, anti-leishmanial, anti-cancer, anti-bacterial, antifungal, and anti-HIV properties. The structural modifications introduced to the I3A scaffold, such as substitutions on the indole ring (alkylation/arylation/halogenation), variations in the aldehyde group via condensation (Aldol/Claisen/Knoevenagel), and molecular hybridization with other reputable bioactive compounds like coumarins, chalcones, triazoles, and thiophenes, contribute to these activities. Beyond its therapeutic potential, I3A has also found applications as a ligand for Schiff base synthesis, a polymer, and a chromophore. This review provides a comprehensive overview of the latest research on I3A and its derivatives, focusing on the key reactions, modification pathways, reaction conditions, yields, and associated therapeutic activities. By understanding these advancements, researchers can gain valuable insights into the potential applications and future directions for I3A-based drug discovery.</p>","PeriodicalId":18548,"journal":{"name":"Mini reviews in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mini reviews in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113895575351704241120060746","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Indole, a ubiquitous structural motif in bioactive compounds, has played a pivotal role in drug discovery. Among indole derivatives, indole-3-carboxaldehyde (I3A) has emerged as a particularly promising scaffold for the development of therapeutic agents. This review delves into the recent advancements in the chemical modification of I3A and its derivatives, highlighting their potential applications in various therapeutic areas. I3A derivatives have demonstrated a wide range of biological activities, including anti-inflammatory, anti-leishmanial, anti-cancer, anti-bacterial, antifungal, and anti-HIV properties. The structural modifications introduced to the I3A scaffold, such as substitutions on the indole ring (alkylation/arylation/halogenation), variations in the aldehyde group via condensation (Aldol/Claisen/Knoevenagel), and molecular hybridization with other reputable bioactive compounds like coumarins, chalcones, triazoles, and thiophenes, contribute to these activities. Beyond its therapeutic potential, I3A has also found applications as a ligand for Schiff base synthesis, a polymer, and a chromophore. This review provides a comprehensive overview of the latest research on I3A and its derivatives, focusing on the key reactions, modification pathways, reaction conditions, yields, and associated therapeutic activities. By understanding these advancements, researchers can gain valuable insights into the potential applications and future directions for I3A-based drug discovery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
吲哚-3-甲醛及其衍生物作为药物设计潜在支架的修饰和生物活性的新见解:综述
吲哚是生物活性化合物中普遍存在的结构基序,在药物发现中起着举足轻重的作用。在吲哚衍生物中,吲哚-3-羧醛(I3A)已成为一种特别有前途的治疗药物开发支架。本文综述了近年来I3A及其衍生物的化学修饰研究进展,重点介绍了其在各种治疗领域的潜在应用。I3A衍生物已显示出广泛的生物活性,包括抗炎、抗利什曼原虫、抗癌、抗菌、抗真菌和抗hiv特性。引入I3A支架的结构修饰,如吲哚环上的取代(烷基化/芳基化/卤化),醛基通过缩合(Aldol/Claisen/Knoevenagel)发生变化,以及与香豆素、chalcones、三唑和噻吩等其他知名生物活性化合物的分子杂交,有助于这些活性的产生。除了其治疗潜力,I3A还被用作希夫碱合成、聚合物和发色团的配体。本文综述了I3A及其衍生物的最新研究进展,重点介绍了I3A及其衍生物的关键反应、修饰途径、反应条件、产率和相关治疗活性。通过了解这些进展,研究人员可以对基于i3的药物发现的潜在应用和未来方向获得有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
0.00%
发文量
231
审稿时长
6 months
期刊介绍: The aim of Mini-Reviews in Medicinal Chemistry is to publish short reviews on the important recent developments in medicinal chemistry and allied disciplines. Mini-Reviews in Medicinal Chemistry covers all areas of medicinal chemistry including developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, drug targets, and natural product research and structure-activity relationship studies. Mini-Reviews in Medicinal Chemistry is an essential journal for every medicinal and pharmaceutical chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
期刊最新文献
The Role of Renin-Angiotensin System in Diabetic Nephropathy: An Update. Smart Applications of Lanthanide Chelates-based Luminescent Probes in Bio-Imaging. The Application of the Pyrazole Structure in the Structural Modification of Natural Products. Drug Repurposing: A Conduit to Unravelling Metabolic Reprogramming for Cancer Treatment. Sustainable Synthesis of Medicinally Important Heterocycles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1