Rafaela Moraes Pereira de Sousa, Luiza Silveira Garcia, Felipe Simões Lemos, Viviane Souza de Campos, Erik Machado Ferreira, Nathália Alves Araujo de Almeida, Tatiana Maron-Gutierrez, Elen Mello de Souza, Vanessa Salete de Paula
{"title":"CRISPR/Cas9 Eye Drop HSV-1 Treatment Reduces Brain Viral Load: A Novel Application to Prevent Neuronal Damage.","authors":"Rafaela Moraes Pereira de Sousa, Luiza Silveira Garcia, Felipe Simões Lemos, Viviane Souza de Campos, Erik Machado Ferreira, Nathália Alves Araujo de Almeida, Tatiana Maron-Gutierrez, Elen Mello de Souza, Vanessa Salete de Paula","doi":"10.3390/pathogens13121087","DOIUrl":null,"url":null,"abstract":"<p><p>Herpes simplex virus-1 (HSV-1) can invade the central nervous system (CNS). However, antiviral drugs used to treat HSV-1 have significant toxicity and resistance. An alternative approach involves the use of the CRISPR/Cas9 complex as a viral replication inhibitor. Editing the <i>UL39</i> gene with CRISPR/Cas9 results in >95% inhibition of HSV-1 replication in vitro; however, few studies have investigated alternative therapies in in vivo models. This study aimed to investigate the efficacy of CRISPR/Cas9 targeting the <i>UL39</i> region, which was administered via the ocular route, to reduce the HSV-1 viral count in the CNS of BALB/c mice. Mice were inoculated with HSV-1 and treated using CRISPR/Cas9. The kinetics of CNS infection were assessed, and the effects of CRISPR/Cas9 were compared with those of topical acyclovir treatments. The brain viral load was analyzed, and histopathology and immunofluorescence of the nervous tissue were performed. The group treated with CRISPR/Cas9 showed a reduced viral load on the seventh day post-infection, and no brain inflammation or chromatin compaction was observed in animals that received CRISPR/Cas9 therapy. These findings suggest that CRISPR/Cas9 anti-<i>UL39</i> therapy can reduce the HSV-1 viral load in brain tissue. Therefore, investigating viral detection and evaluating antiviral treatments in the brain is essential.</p>","PeriodicalId":19758,"journal":{"name":"Pathogens","volume":"13 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11676479/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pathogens13121087","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Herpes simplex virus-1 (HSV-1) can invade the central nervous system (CNS). However, antiviral drugs used to treat HSV-1 have significant toxicity and resistance. An alternative approach involves the use of the CRISPR/Cas9 complex as a viral replication inhibitor. Editing the UL39 gene with CRISPR/Cas9 results in >95% inhibition of HSV-1 replication in vitro; however, few studies have investigated alternative therapies in in vivo models. This study aimed to investigate the efficacy of CRISPR/Cas9 targeting the UL39 region, which was administered via the ocular route, to reduce the HSV-1 viral count in the CNS of BALB/c mice. Mice were inoculated with HSV-1 and treated using CRISPR/Cas9. The kinetics of CNS infection were assessed, and the effects of CRISPR/Cas9 were compared with those of topical acyclovir treatments. The brain viral load was analyzed, and histopathology and immunofluorescence of the nervous tissue were performed. The group treated with CRISPR/Cas9 showed a reduced viral load on the seventh day post-infection, and no brain inflammation or chromatin compaction was observed in animals that received CRISPR/Cas9 therapy. These findings suggest that CRISPR/Cas9 anti-UL39 therapy can reduce the HSV-1 viral load in brain tissue. Therefore, investigating viral detection and evaluating antiviral treatments in the brain is essential.
期刊介绍:
Pathogens (ISSN 2076-0817) publishes reviews, regular research papers and short notes on all aspects of pathogens and pathogen-host interactions. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.