Expression and purification of an activated orexin receptor 1- G-protein complex

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Protein expression and purification Pub Date : 2025-01-04 DOI:10.1016/j.pep.2025.106660
Ioanna Ramou , Steven Janvier , Sarah Druwé , Charanne Sys , Lies Dekeyzer , Pieter Claes , Els Pardon , Christel Menet , Jan Steyaert
{"title":"Expression and purification of an activated orexin receptor 1- G-protein complex","authors":"Ioanna Ramou ,&nbsp;Steven Janvier ,&nbsp;Sarah Druwé ,&nbsp;Charanne Sys ,&nbsp;Lies Dekeyzer ,&nbsp;Pieter Claes ,&nbsp;Els Pardon ,&nbsp;Christel Menet ,&nbsp;Jan Steyaert","doi":"10.1016/j.pep.2025.106660","DOIUrl":null,"url":null,"abstract":"<div><div>Orexin receptors constitute a family of class A G-protein coupled receptors. There are two subtypes of orexin receptors, namely OX1R and OX2R. OX1R and OX2R are widely distributed in the central nervous system and are the targets for the peptide neurotransmitters orexin-A and orexin-B. Orexins are involved in a plethora of key physiological functions such as regulation of the sleep/wake cycle, feeding behavior, energy homeostasis, and cognition. Dysfunction of the orexin system has been linked to various pathological conditions, such as narcolepsy, insomnia, obesity, addiction, cognitive impairment, and depression. The active state structure of OX2R has been elucidated, while the active state structure of OX1R remains unresolved. Here, we describe a method for the expression and purification of an activated OX1R bound to its native peptide ligand, orexin-A, in complex with a Dominant Negative Gsq protein and Nb35. The proteins were expressed in Hi5 insect cells and subsequently purified via two consecutive affinity chromatography steps, followed by a final polishing Size Exclusion Chromatography step. This study could stimulate further research into the activation mechanisms of OX1R and the structural determination of its active state structure.</div></div>","PeriodicalId":20757,"journal":{"name":"Protein expression and purification","volume":"228 ","pages":"Article 106660"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein expression and purification","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046592825000026","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Orexin receptors constitute a family of class A G-protein coupled receptors. There are two subtypes of orexin receptors, namely OX1R and OX2R. OX1R and OX2R are widely distributed in the central nervous system and are the targets for the peptide neurotransmitters orexin-A and orexin-B. Orexins are involved in a plethora of key physiological functions such as regulation of the sleep/wake cycle, feeding behavior, energy homeostasis, and cognition. Dysfunction of the orexin system has been linked to various pathological conditions, such as narcolepsy, insomnia, obesity, addiction, cognitive impairment, and depression. The active state structure of OX2R has been elucidated, while the active state structure of OX1R remains unresolved. Here, we describe a method for the expression and purification of an activated OX1R bound to its native peptide ligand, orexin-A, in complex with a Dominant Negative Gsq protein and Nb35. The proteins were expressed in Hi5 insect cells and subsequently purified via two consecutive affinity chromatography steps, followed by a final polishing Size Exclusion Chromatography step. This study could stimulate further research into the activation mechanisms of OX1R and the structural determination of its active state structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
活化的食欲素受体1- g蛋白复合物的表达和纯化。
食欲素受体是a类g蛋白偶联受体的一个家族。食欲素受体有两个亚型,即OX1R和OX2R。OX1R和OX2R广泛分布于中枢神经系统,是多肽神经递质食欲素- a和食欲素- b的靶点。食欲素参与了许多关键的生理功能,如睡眠/觉醒周期的调节、摄食行为、能量稳态和认知。食欲素系统的功能障碍与各种病理状况有关,如嗜睡症、失眠、肥胖、成瘾、认知障碍和抑郁。OX2R的活性态结构已被阐明,而OX1R的活性态结构仍未解决。在这里,我们描述了一种表达和纯化活化OX1R的方法,该OX1R与天然肽配体orexin-A结合,与显性阴性Gsq蛋白和Nb35复合物结合。这些蛋白在Hi5昆虫细胞中表达,随后通过两个连续的亲和层析步骤纯化,然后进行最后的抛光尺寸排除层析步骤。本研究为进一步研究OX1R的激活机制和确定其活性态结构提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein expression and purification
Protein expression and purification 生物-生化研究方法
CiteScore
3.70
自引率
6.20%
发文量
120
审稿时长
32 days
期刊介绍: Protein Expression and Purification is an international journal providing a forum for the dissemination of new information on protein expression, extraction, purification, characterization, and/or applications using conventional biochemical and/or modern molecular biological approaches and methods, which are of broad interest to the field. The journal does not typically publish repetitive examples of protein expression and purification involving standard, well-established, methods. However, exceptions might include studies on important and/or difficult to express and/or purify proteins and/or studies that include extensive protein characterization, which provide new, previously unpublished information.
期刊最新文献
Production of recombinant coiled coil silk proteins for materials synthesis. High-affinity nanobodies targeting IL-12B for the detection of fluorescence resonance energy transfer. Optimization on cell lysis and capture process of human adenovirus type 5 produced in suspension HEK293 cells Expression and biochemical characterization of a novel NAD+-dependent xylitol dehydrogenase from the plant endophytic fungus Trichoderma gamsii. Differentially labeled flaviviral protease-cofactor complex for NMR spectroscopic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1