Reese Michaels, Tiago V Barreira, Stephen N Robinovitch, Jacob J Sosnoff, Yaejin Moon
{"title":"Estimating hip impact velocity and acceleration from video-captured falls using a pose estimation algorithm.","authors":"Reese Michaels, Tiago V Barreira, Stephen N Robinovitch, Jacob J Sosnoff, Yaejin Moon","doi":"10.1038/s41598-025-85934-y","DOIUrl":null,"url":null,"abstract":"<p><p>Analyzing video footage of falls in older adults has emerged as an alternative to traditional lab studies. However, this approach is limited by the labor-intensive process of manually labeling body parts. To address this limitation, we aimed to validate the use of the AI-based pose estimation algorithm (OpenPose) in assessing the hip impact velocity and acceleration of video-captured falls. We analyzed 110 videos of 13 older adults (64.0 ± 5.9 years old) falling sideways in an experimental setting. By applying OpenPose to each video, we generated a time series of hip positions in the video, which were then analyzed using custom MATLAB code to calculate hip impact velocity and acceleration. These calculations were compared against ground truth measurements obtained from motion capture systems (VICON for hip impact velocity) and inertial measurement units (MC10 for hip impact acceleration). We examined the agreement between the ground truth and OpenPose measurements in terms of mean of absolute error (MAE), mean of absolute percentage error (MAPE), and bias (mean of error). Results showed that OpenPose had a good accuracy in estimating hip impact velocity with minimal bias (MAE: 0.17 ± 0.13 m/s, MAPE: 7.28 ± 5.21%; percent bias: - 1.27%). However, its estimation of hip impact acceleration (i.e., peak vertical hip acceleration at impact) showed poor accuracy (MAPE: 26.3 ± 19.4%), showing substantial underestimation in instances of high acceleration impacts (> 3.0 g). Further ANOVA analysis revealed OpenPose's ability to discern significant differences in hip impact velocity and acceleration based on the movement response utilized during the fall (e.g., stick-like fall, tuck-and-roll, knee block). This is the first study to validate the use of a pose estimation algorithm for identifying the hip impact kinematics in video-captured falls among older adults. Future validation studies involving diverse camera settings, fall contexts, and biomechanical parameters are warranted to extend this support for using pose estimation algorithms in this field.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"1558"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717977/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-85934-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Analyzing video footage of falls in older adults has emerged as an alternative to traditional lab studies. However, this approach is limited by the labor-intensive process of manually labeling body parts. To address this limitation, we aimed to validate the use of the AI-based pose estimation algorithm (OpenPose) in assessing the hip impact velocity and acceleration of video-captured falls. We analyzed 110 videos of 13 older adults (64.0 ± 5.9 years old) falling sideways in an experimental setting. By applying OpenPose to each video, we generated a time series of hip positions in the video, which were then analyzed using custom MATLAB code to calculate hip impact velocity and acceleration. These calculations were compared against ground truth measurements obtained from motion capture systems (VICON for hip impact velocity) and inertial measurement units (MC10 for hip impact acceleration). We examined the agreement between the ground truth and OpenPose measurements in terms of mean of absolute error (MAE), mean of absolute percentage error (MAPE), and bias (mean of error). Results showed that OpenPose had a good accuracy in estimating hip impact velocity with minimal bias (MAE: 0.17 ± 0.13 m/s, MAPE: 7.28 ± 5.21%; percent bias: - 1.27%). However, its estimation of hip impact acceleration (i.e., peak vertical hip acceleration at impact) showed poor accuracy (MAPE: 26.3 ± 19.4%), showing substantial underestimation in instances of high acceleration impacts (> 3.0 g). Further ANOVA analysis revealed OpenPose's ability to discern significant differences in hip impact velocity and acceleration based on the movement response utilized during the fall (e.g., stick-like fall, tuck-and-roll, knee block). This is the first study to validate the use of a pose estimation algorithm for identifying the hip impact kinematics in video-captured falls among older adults. Future validation studies involving diverse camera settings, fall contexts, and biomechanical parameters are warranted to extend this support for using pose estimation algorithms in this field.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.