Millisecond-level transient heating and temperature monitoring technique for ultrasound-induced thermal strain imaging.

IF 12.4 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Theranostics Pub Date : 2025-01-01 DOI:10.7150/thno.95997
Mengyue Chen, Zhiyu Sheng, Ran Wei, Bohua Zhang, Howuk Kim, Huaiyu Wu, Yu Chu, Qiyang Chen, Andrew Breon, Sibo Li, Matthew B Wielgat, Dhanansayan Shanmuganayagam, Edith Tzeng, Xuecang Geng, Kang Kim, Xiaoning Jiang
{"title":"Millisecond-level transient heating and temperature monitoring technique for ultrasound-induced thermal strain imaging.","authors":"Mengyue Chen, Zhiyu Sheng, Ran Wei, Bohua Zhang, Howuk Kim, Huaiyu Wu, Yu Chu, Qiyang Chen, Andrew Breon, Sibo Li, Matthew B Wielgat, Dhanansayan Shanmuganayagam, Edith Tzeng, Xuecang Geng, Kang Kim, Xiaoning Jiang","doi":"10.7150/thno.95997","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Ultrasound-induced thermal strain imaging (US-TSI) is a promising ultrasound imaging modality that has been demonstrated in preclinical studies to identify a lipid-rich necrotic core of an atherosclerotic plaque. However, human physiological motion, e.g., cardiac pulsation, poses challenges in implementing US-TSI applications, where achieving a millisecond-level temperature rise by delivering acoustic energy from a compact US-TSI probe is a key requirement. This study aims to develop a transient ultrasound heating and thermocouple monitoring technique at the millisecond level for US-TSI applications. <b>Methods:</b> We designed, prototyped, and characterized a novel US-TSI probe that includes a high-power, 3.5 MHz heating transducer with symmetrical dual 1D concave array. Additionally, millisecond-level temperature monitoring was demonstrated with fast-response thermocouples in laser- and ultrasound- induced thermal tests. Subsequently, we demonstrated the prototyped US-TSI probe can produce a desired temperature rise in a millisecond-short time window <i>in vitro</i> phantom and <i>in vivo</i> animal tests. <b>Results:</b> The prototyped US-TSI probe delivered zero-to-peak acoustic pressure up to 6.2 MPa with a 90 V<sub>PP</sub> input voltage. Both laser- and ultrasound- induced thermal tests verified that the selected thermocouples can monitor temperature change within 50 ms. The fast-response thermocouple confirmed the transient heating ability of the US-TSI probe, achieving a 3.9 °C temperature rise after a 25 ms heating duration (50% duty cycle) in the gel phantom and a 2.0 °C temperature rise after a 50 ms heating duration (50% duty cycle) in a pig model. <b>Conclusions:</b> We successfully demonstrated a millisecond-level transient heating and temperature monitoring technique utilizing the novel US-TSI probe and fast-response thermocouples. The reported transient ultrasound heating and thermocouple monitoring technique is promising for future <i>in vivo</i> human subject studies in US-TSI or other ultrasound-related thermal investigations.</p>","PeriodicalId":22932,"journal":{"name":"Theranostics","volume":"15 3","pages":"815-827"},"PeriodicalIF":12.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11700873/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theranostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7150/thno.95997","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Ultrasound-induced thermal strain imaging (US-TSI) is a promising ultrasound imaging modality that has been demonstrated in preclinical studies to identify a lipid-rich necrotic core of an atherosclerotic plaque. However, human physiological motion, e.g., cardiac pulsation, poses challenges in implementing US-TSI applications, where achieving a millisecond-level temperature rise by delivering acoustic energy from a compact US-TSI probe is a key requirement. This study aims to develop a transient ultrasound heating and thermocouple monitoring technique at the millisecond level for US-TSI applications. Methods: We designed, prototyped, and characterized a novel US-TSI probe that includes a high-power, 3.5 MHz heating transducer with symmetrical dual 1D concave array. Additionally, millisecond-level temperature monitoring was demonstrated with fast-response thermocouples in laser- and ultrasound- induced thermal tests. Subsequently, we demonstrated the prototyped US-TSI probe can produce a desired temperature rise in a millisecond-short time window in vitro phantom and in vivo animal tests. Results: The prototyped US-TSI probe delivered zero-to-peak acoustic pressure up to 6.2 MPa with a 90 VPP input voltage. Both laser- and ultrasound- induced thermal tests verified that the selected thermocouples can monitor temperature change within 50 ms. The fast-response thermocouple confirmed the transient heating ability of the US-TSI probe, achieving a 3.9 °C temperature rise after a 25 ms heating duration (50% duty cycle) in the gel phantom and a 2.0 °C temperature rise after a 50 ms heating duration (50% duty cycle) in a pig model. Conclusions: We successfully demonstrated a millisecond-level transient heating and temperature monitoring technique utilizing the novel US-TSI probe and fast-response thermocouples. The reported transient ultrasound heating and thermocouple monitoring technique is promising for future in vivo human subject studies in US-TSI or other ultrasound-related thermal investigations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声诱发热应变成像的毫秒级瞬态加热和温度监测技术。
背景:超声诱导热应变成像(US-TSI)是一种很有前途的超声成像方式,在临床前研究中已被证明可以识别动脉粥样硬化斑块富含脂质的坏死核心。然而,人体生理运动,如心脏搏动,在实施US-TSI应用中提出了挑战,其中通过从紧凑的US-TSI探头传递声能来实现毫秒级温升是一个关键要求。本研究旨在为US-TSI应用开发一种毫秒级瞬态超声加热和热电偶监测技术。方法:我们设计、制作并表征了一种新型US-TSI探针,该探针包括一个对称双一维凹阵列的大功率3.5 MHz加热传感器。此外,在激光和超声诱导热测试中,利用快速响应热电偶进行了毫秒级温度监测。随后,我们在体外和体内动物实验中证明了原型US-TSI探针可以在毫秒的短时间窗口内产生所需的温升。结果:原型US-TSI探头在90 VPP输入电压下提供高达6.2 MPa的零至峰值声压。激光和超声诱导热测试验证了所选热电偶可以监测50 ms内的温度变化。快速响应热电偶证实了US-TSI探针的瞬态加热能力,在凝胶模型中加热25 ms(50%占空比)后温度上升3.9°C,在猪模型中加热50 ms(50%占空比)后温度上升2.0°C。结论:我们成功展示了利用新型US-TSI探针和快速响应热电偶的毫秒级瞬态加热和温度监测技术。报道的瞬态超声加热和热电偶监测技术在未来的US-TSI或其他超声相关的热研究中有前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Theranostics
Theranostics MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
25.40
自引率
1.60%
发文量
433
审稿时长
1 months
期刊介绍: Theranostics serves as a pivotal platform for the exchange of clinical and scientific insights within the diagnostic and therapeutic molecular and nanomedicine community, along with allied professions engaged in integrating molecular imaging and therapy. As a multidisciplinary journal, Theranostics showcases innovative research articles spanning fields such as in vitro diagnostics and prognostics, in vivo molecular imaging, molecular therapeutics, image-guided therapy, biosensor technology, nanobiosensors, bioelectronics, system biology, translational medicine, point-of-care applications, and personalized medicine. Encouraging a broad spectrum of biomedical research with potential theranostic applications, the journal rigorously peer-reviews primary research, alongside publishing reviews, news, and commentary that aim to bridge the gap between the laboratory, clinic, and biotechnology industries.
期刊最新文献
Cardiomyocyte S1PR1 promotes cardiac regeneration via AKT/mTORC1 signaling pathway. Macrophage-based pathogenesis and theranostics of vulnerable plaques. Multiple crosslinked, self-healing, and shape-adaptable hydrogel laden with pain-relieving chitosan@borneol nanoparticles for infected burn wound healing. Optimized circular RNA vaccines for superior cancer immunotherapy. Light-eye-body axis: exploring the network from retinal illumination to systemic regulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1