D Prathiksha, S Rajeshkumar, J Lingaraj, M Pradeep
{"title":"Ocimum gratissimum mediated synthesis of AgNPs - An in vitro analysis of anti-inflammatory and antimicrobial effects.","authors":"D Prathiksha, S Rajeshkumar, J Lingaraj, M Pradeep","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Silver nanoparticles (AgNPs) are effective against almost all kinds of pathogenic organisms. The green synthesis of AgNPs utilizing extracts from medicinal plants is being researched to examine the therapeutic advantages of AgNPs because the chemical production of AgNPs is more toxic. In this study, the stem extract of Ocimum Gratissimum (OG) also known as Karunthulasi or wild basil for green synthesis of AgNPs and evaluating their antiinflammatory and antimicrobial effects.</p><p><strong>Materials and methods: </strong>The produced nanoparticles were characterized using UV-visible spectroscopy. The Bovine Serum Assay (BSA) and Egg Albumin (EA) assays were used to assess the anti-inflammatory effects. The protein denaturation of AgNPs was calculated and compared to a standard to determine the anti-inflammatory activity of green synthesized AgNPs. Using varying concentrations of OGmediated AgNPs in Mueller Hinton Agar (MHA), the antimicrobial effects of OG have been investigated against E. coli, S. aureus, and Pseudomonas sp. Additionally, by measuring optical density, the time-kill curve analysis for E. Coli and S. Aureus has been examined from one hour for up to five hours.</p><p><strong>Results: </strong>The green synthesized AgNPs were developed successfully using a plant Ocimum gratissimum. The synthesized AgNPs exhibited a maximum absorption peak at 440 nm and SEM analysis revealed that the synthesized AgNPs were spherical and oval. The result findings of the anti-inflammatory activity reveal that AgNPs have great potential when compared to the standard. At the concentration of 50 μg/mL, AgNPs exhibit 76% in BSA assay and 74% in EA assay, where the standard shows 80% inhibition. The antimicrobial activity showed a zone of inhibition around 19mm for E. coli and a 20mm zone of inhibition for S. aureus and Pseudomonas sp., which shows the efficacy of AgNPs. The time-kill assay shows that the optical density of E. coli and S. aureus was reduced to 0.1 after 5 hours of incubation, which shows the potential of green synthesized AgNPs.</p><p><strong>Conclusion: </strong>OG-mediated AgNPs have both antiinflammatory and antimicrobial effects. Anti-inflammatory effects are better when compared to standard drugs. Antimicrobial effects are better for Gram-negative bacteria.</p>","PeriodicalId":39388,"journal":{"name":"Medical Journal of Malaysia","volume":"80 Suppl 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Journal of Malaysia","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Silver nanoparticles (AgNPs) are effective against almost all kinds of pathogenic organisms. The green synthesis of AgNPs utilizing extracts from medicinal plants is being researched to examine the therapeutic advantages of AgNPs because the chemical production of AgNPs is more toxic. In this study, the stem extract of Ocimum Gratissimum (OG) also known as Karunthulasi or wild basil for green synthesis of AgNPs and evaluating their antiinflammatory and antimicrobial effects.
Materials and methods: The produced nanoparticles were characterized using UV-visible spectroscopy. The Bovine Serum Assay (BSA) and Egg Albumin (EA) assays were used to assess the anti-inflammatory effects. The protein denaturation of AgNPs was calculated and compared to a standard to determine the anti-inflammatory activity of green synthesized AgNPs. Using varying concentrations of OGmediated AgNPs in Mueller Hinton Agar (MHA), the antimicrobial effects of OG have been investigated against E. coli, S. aureus, and Pseudomonas sp. Additionally, by measuring optical density, the time-kill curve analysis for E. Coli and S. Aureus has been examined from one hour for up to five hours.
Results: The green synthesized AgNPs were developed successfully using a plant Ocimum gratissimum. The synthesized AgNPs exhibited a maximum absorption peak at 440 nm and SEM analysis revealed that the synthesized AgNPs were spherical and oval. The result findings of the anti-inflammatory activity reveal that AgNPs have great potential when compared to the standard. At the concentration of 50 μg/mL, AgNPs exhibit 76% in BSA assay and 74% in EA assay, where the standard shows 80% inhibition. The antimicrobial activity showed a zone of inhibition around 19mm for E. coli and a 20mm zone of inhibition for S. aureus and Pseudomonas sp., which shows the efficacy of AgNPs. The time-kill assay shows that the optical density of E. coli and S. aureus was reduced to 0.1 after 5 hours of incubation, which shows the potential of green synthesized AgNPs.
Conclusion: OG-mediated AgNPs have both antiinflammatory and antimicrobial effects. Anti-inflammatory effects are better when compared to standard drugs. Antimicrobial effects are better for Gram-negative bacteria.
期刊介绍:
Published since 1890 this journal originated as the Journal of the Straits Medical Association. With the formation of the Malaysian Medical Association (MMA), the Journal became the official organ, supervised by an editorial board. Some of the early Hon. Editors were Mr. H.M. McGladdery (1960 - 1964), Dr. A.A. Sandosham (1965 - 1977), Prof. Paul C.Y. Chen (1977 - 1987). It is a scientific journal, published quarterly and can be found in medical libraries in many parts of the world. The Journal also enjoys the status of being listed in the Index Medicus, the internationally accepted reference index of medical journals. The editorial columns often reflect the Association''s views and attitudes towards medical problems in the country. The MJM aims to be a peer reviewed scientific journal of the highest quality. We want to ensure that whatever data is published is true and any opinion expressed important to medical science. We believe being Malaysian is our unique niche; our priority will be for scientific knowledge about diseases found in Malaysia and for the practice of medicine in Malaysia. The MJM will archive knowledge about the changing pattern of human diseases and our endeavours to overcome them. It will also document how medicine develops as a profession in the nation. We will communicate and co-operate with other scientific journals in Malaysia. We seek articles that are of educational value to doctors. We will consider all unsolicited articles submitted to the journal and will commission distinguished Malaysians to write relevant review articles. We want to help doctors make better decisions and be good at judging the value of scientific data. We want to help doctors write better, to be articulate and precise.