Jack M Botting, Md Khalesur Rahman, Hui Xu, Jian Yue, Wangbiao Guo, Joshua T Del Mundo, Michal Hammel, Md A Motaleb, Jun Liu
{"title":"FlbB forms a distinctive ring essential for periplasmic flagellar assembly and motility in Borrelia burgdorferi.","authors":"Jack M Botting, Md Khalesur Rahman, Hui Xu, Jian Yue, Wangbiao Guo, Joshua T Del Mundo, Michal Hammel, Md A Motaleb, Jun Liu","doi":"10.1371/journal.ppat.1012812","DOIUrl":null,"url":null,"abstract":"<p><p>Spirochetes are a widely existing group of bacteria with a distinct morphology. Some spirochetes are important human pathogens that utilize periplasmic flagella to achieve motility and host infection. The motors that drive the rotation of periplasmic flagella have a unique spirochete-specific feature, termed the collar, crucial for the flat-wave morphology and motility of the Lyme disease spirochete Borrelia burgdorferi. Here, we deploy cryo-electron tomography and subtomogram averaging to determine high-resolution in-situ structures of the B. burgdorferi flagellar motor. Comparative analysis and molecular modeling of in-situ flagellar motor structures from B. burgdorferi mutants lacking each of the known collar proteins (FlcA, FlcB, FlcC, FlbB, and Bb0236/FlcD) uncover a complex protein network at the base of the collar. Importantly, our data suggest that FlbB not only forms a novel periplasmic ring around the rotor but also acts as a scaffold supporting collar assembly and subsequent recruitment of stator complexes. The complex protein network based on the FlbB ring effectively bridges the rotor and 16 torque-generating stator complexes in each flagellar motor, thus contributing to the specialized motility and lifestyle of spirochetes in complex environments.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 1","pages":"e1012812"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012812","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spirochetes are a widely existing group of bacteria with a distinct morphology. Some spirochetes are important human pathogens that utilize periplasmic flagella to achieve motility and host infection. The motors that drive the rotation of periplasmic flagella have a unique spirochete-specific feature, termed the collar, crucial for the flat-wave morphology and motility of the Lyme disease spirochete Borrelia burgdorferi. Here, we deploy cryo-electron tomography and subtomogram averaging to determine high-resolution in-situ structures of the B. burgdorferi flagellar motor. Comparative analysis and molecular modeling of in-situ flagellar motor structures from B. burgdorferi mutants lacking each of the known collar proteins (FlcA, FlcB, FlcC, FlbB, and Bb0236/FlcD) uncover a complex protein network at the base of the collar. Importantly, our data suggest that FlbB not only forms a novel periplasmic ring around the rotor but also acts as a scaffold supporting collar assembly and subsequent recruitment of stator complexes. The complex protein network based on the FlbB ring effectively bridges the rotor and 16 torque-generating stator complexes in each flagellar motor, thus contributing to the specialized motility and lifestyle of spirochetes in complex environments.
期刊介绍:
Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.