{"title":"Three-dimensional spiral-shaping method of microcatheter for paraclinoid aneurysms: assessment using silicone models.","authors":"Eiki Imaoka, Masahiro Nishihori, Takashi Izumi, Shunsaku Goto, Yoshio Araki, Kinya Yokoyama, Kenji Uda, Fumiaki Kanamori, Ryuta Saito","doi":"10.18999/nagjms.86.4.655","DOIUrl":null,"url":null,"abstract":"<p><p>Selecting an appropriate microcatheter tip shape for paraclinoid aneurysms is difficult. Therefore, we devised an original simple and uniform three-dimensional (3D) spiral-shaping method of microcatheter and validated the characteristics and usefulness of this method for coil embolization of paraclinoid aneurysms using patient-specific silicone models. These silicone models were produced based on clinical data from four patients with four paraclinoid aneurysms that underwent endovascular treatment using the 3D spiral-shaping method. These models were classified into four types: superior, medial, inferior, and lateral corresponding to the aneurysm protrusion and locations (C3 or C2 segments by Fisher's classification). Employing a pulsatile pump setup, two operators assessed the following items: navigation methods (pull and wire guiding), catheterization times, microcatheter tip position in the aneurysm, and the feasibility of inserting a framing coil by simple technique compared with three other shapes (straight, 90, pigtail). Three-dimensional spiral-shaped microcatheter could be placed in the medial and inferior type models of C3 segments and superior type model of C2 segment by the pullback method. Catheterization times using a 3D spiral-shaped catheter were significantly shorter than other shaped ones in the superior type models. No significant difference was found in another silicone model. Three-dimensional spiral- and pigtail-shaped catheters tended to position the tip at the center of the aneurysm. In conclusion, 3D spiral-shaped microcatheter was especially effective for the superior projected aneurysm at the C2 segment. The 3D spiral-shaping method can provide easy and secure navigation of the microcatheter into the paraclinoid aneurysms, ensuring optimal positioning for coil insertion.</p>","PeriodicalId":49014,"journal":{"name":"Nagoya Journal of Medical Science","volume":"86 4","pages":"655-664"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704776/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Journal of Medical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.18999/nagjms.86.4.655","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Selecting an appropriate microcatheter tip shape for paraclinoid aneurysms is difficult. Therefore, we devised an original simple and uniform three-dimensional (3D) spiral-shaping method of microcatheter and validated the characteristics and usefulness of this method for coil embolization of paraclinoid aneurysms using patient-specific silicone models. These silicone models were produced based on clinical data from four patients with four paraclinoid aneurysms that underwent endovascular treatment using the 3D spiral-shaping method. These models were classified into four types: superior, medial, inferior, and lateral corresponding to the aneurysm protrusion and locations (C3 or C2 segments by Fisher's classification). Employing a pulsatile pump setup, two operators assessed the following items: navigation methods (pull and wire guiding), catheterization times, microcatheter tip position in the aneurysm, and the feasibility of inserting a framing coil by simple technique compared with three other shapes (straight, 90, pigtail). Three-dimensional spiral-shaped microcatheter could be placed in the medial and inferior type models of C3 segments and superior type model of C2 segment by the pullback method. Catheterization times using a 3D spiral-shaped catheter were significantly shorter than other shaped ones in the superior type models. No significant difference was found in another silicone model. Three-dimensional spiral- and pigtail-shaped catheters tended to position the tip at the center of the aneurysm. In conclusion, 3D spiral-shaped microcatheter was especially effective for the superior projected aneurysm at the C2 segment. The 3D spiral-shaping method can provide easy and secure navigation of the microcatheter into the paraclinoid aneurysms, ensuring optimal positioning for coil insertion.
期刊介绍:
The Journal publishes original papers in the areas of medical science and its related fields. Reviews, symposium reports, short communications, notes, case reports, hypothesis papers, medical image at a glance, video and announcements are also accepted.
Manuscripts should be in English. It is recommended that an English check of the manuscript by a competent and knowledgeable native speaker be completed before submission.