The mitochondriotropic antioxidants AntiOxBEN2 and AntiOxCIN4 are structurally-similar but differentially alter energy homeostasis in human skin fibroblasts.
José Teixeira, Sofia Benfeito, Rodrigo Carreira, André Barbosa, Ricardo Amorim, Ludgero C Tavares, John G Jones, Nuno Raimundo, Fernando Cagide, Catarina Oliveira, Fernanda Borges, Werner J H Koopman, Paulo J Oliveira
{"title":"The mitochondriotropic antioxidants AntiOxBEN<sub>2</sub> and AntiOxCIN<sub>4</sub> are structurally-similar but differentially alter energy homeostasis in human skin fibroblasts.","authors":"José Teixeira, Sofia Benfeito, Rodrigo Carreira, André Barbosa, Ricardo Amorim, Ludgero C Tavares, John G Jones, Nuno Raimundo, Fernando Cagide, Catarina Oliveira, Fernanda Borges, Werner J H Koopman, Paulo J Oliveira","doi":"10.1016/j.bbabio.2025.149535","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial dysfunction and increased reactive oxygen species (ROS) generation play an import role in different human pathologies. In this context, mitochondrial targeting of potentially protective antioxidants by their coupling to the lipophilic triphenylphosphonium cation (TPP) is widely applied. Employing a six‑carbon (C<sub>6</sub>) linker, we recently demonstrated that mitochondria-targeted phenolic antioxidants derived from gallic acid (AntiOxBEN<sub>2</sub>) and caffeic acid (AntiOxCIN<sub>4</sub>) counterbalance oxidative stress in primary human skin fibroblasts by activating ROS-protective mechanisms. Here we demonstrate that C<sub>6</sub>-TPP (but not AntiOxBEN<sub>2</sub> and AntiOxCIN<sub>4</sub>) induce cell death in human skin fibroblasts. This indicates that C<sub>6</sub>-TPP cytoxocity is counterbalanced by the antioxidant moieties of AntiOxBEN<sub>2</sub> and AntiOxCIN<sub>4</sub>. Remarkably, C<sub>6</sub>-TPP and AntiOxBEN<sub>2</sub> (but not AntiOxCIN<sub>4</sub>) induced a glycolytic switch, as exemplified by a reduced cellular oxygen consumption rate (OCR), increased extracellular acidification rate (ECAR), elevated extracellular lactate levels, and higher protein levels of glucose transporter 1 (GLUT-1). This switch involved activation of AMP-activated protein kinase (AMPK) and fully compensated for the loss in mitochondrial ATP production by sustaining cellular ATP content. When glycolytic switch induction was prevented (i.e. by using a glucose-free, galactose-containing medium), AntiOxBEN<sub>2</sub> induced cell death whereas AntiOxCIN<sub>4</sub> did not. We conclude that, despite their similar chemical structure and antioxidant capacity, AntiOxBEN<sub>2</sub> and AntiOxCIN<sub>4</sub> display both common (redox-adaptive) and specific (bioenergetic-adaptive) effects.</p>","PeriodicalId":50731,"journal":{"name":"Biochimica et Biophysica Acta-Bioenergetics","volume":" ","pages":"149535"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Bioenergetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbabio.2025.149535","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondrial dysfunction and increased reactive oxygen species (ROS) generation play an import role in different human pathologies. In this context, mitochondrial targeting of potentially protective antioxidants by their coupling to the lipophilic triphenylphosphonium cation (TPP) is widely applied. Employing a six‑carbon (C6) linker, we recently demonstrated that mitochondria-targeted phenolic antioxidants derived from gallic acid (AntiOxBEN2) and caffeic acid (AntiOxCIN4) counterbalance oxidative stress in primary human skin fibroblasts by activating ROS-protective mechanisms. Here we demonstrate that C6-TPP (but not AntiOxBEN2 and AntiOxCIN4) induce cell death in human skin fibroblasts. This indicates that C6-TPP cytoxocity is counterbalanced by the antioxidant moieties of AntiOxBEN2 and AntiOxCIN4. Remarkably, C6-TPP and AntiOxBEN2 (but not AntiOxCIN4) induced a glycolytic switch, as exemplified by a reduced cellular oxygen consumption rate (OCR), increased extracellular acidification rate (ECAR), elevated extracellular lactate levels, and higher protein levels of glucose transporter 1 (GLUT-1). This switch involved activation of AMP-activated protein kinase (AMPK) and fully compensated for the loss in mitochondrial ATP production by sustaining cellular ATP content. When glycolytic switch induction was prevented (i.e. by using a glucose-free, galactose-containing medium), AntiOxBEN2 induced cell death whereas AntiOxCIN4 did not. We conclude that, despite their similar chemical structure and antioxidant capacity, AntiOxBEN2 and AntiOxCIN4 display both common (redox-adaptive) and specific (bioenergetic-adaptive) effects.
期刊介绍:
BBA Bioenergetics covers the area of biological membranes involved in energy transfer and conversion. In particular, it focuses on the structures obtained by X-ray crystallography and other approaches, and molecular mechanisms of the components of photosynthesis, mitochondrial and bacterial respiration, oxidative phosphorylation, motility and transport. It spans applications of structural biology, molecular modeling, spectroscopy and biophysics in these systems, through bioenergetic aspects of mitochondrial biology including biomedicine aspects of energy metabolism in mitochondrial disorders, neurodegenerative diseases like Parkinson''s and Alzheimer''s, aging, diabetes and even cancer.