Reorganization of Dynamic Network in Stroke Patients and Its Potential for Predicting Motor Recovery.

IF 3 4区 医学 Q2 NEUROSCIENCES Neural Plasticity Pub Date : 2024-12-31 eCollection Date: 2024-01-01 DOI:10.1155/np/9932927
Xiaomin Pang, Longquan Huang, Huahang He, Shaojun Xie, Jinfeng Huang, Xiaorong Ge, Tianqing Zheng, Liren Zhao, Ning Xu, Zhao Zhang
{"title":"Reorganization of Dynamic Network in Stroke Patients and Its Potential for Predicting Motor Recovery.","authors":"Xiaomin Pang, Longquan Huang, Huahang He, Shaojun Xie, Jinfeng Huang, Xiaorong Ge, Tianqing Zheng, Liren Zhao, Ning Xu, Zhao Zhang","doi":"10.1155/np/9932927","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> The investigation of brain functional network dynamics offers a promising approach to understanding network reorganization poststroke. This study aims to explore the dynamic network configurations associated with motor recovery in stroke patients and assess their predictive potential using multilayer network analysis. <b>Methods:</b> Resting-state functional magnetic resonance imaging data were collected from patients with subacute stroke within 2 weeks of onset and from matched healthy controls (HCs). Group-independent component analysis and a sliding window approach were utilized to construct dynamic functional networks. A multilayer network model was applied to quantify the switching rates of individual nodes, subnetworks, and the global network across the dynamic network. Correlation analyses assessed the relationship between switching rates and motor function recovery, while linear regression models evaluated the predictive potential of global network switching rate on motor recovery outcomes. <b>Results:</b> Stroke patients exhibited a significant increase in the switching rates of specific brain regions, including the medial frontal gyrus, precentral gyrus, inferior parietal lobule, anterior cingulate, superior frontal gyrus, and postcentral gyrus, compared to HCs. Additionally, elevated switching rates were observed in the frontoparietal network, default mode network, cerebellar network, and in the global network. These increased switching rates were positively correlated with baseline Fugl-Meyer assessment (FMA) scores and changes in FMA scores at 90 days poststroke. Importantly, the global network's switching rate emerged as a significant predictor of motor recovery in stroke patients. <b>Conclusions:</b> The reorganization of dynamic network configurations in stroke patients reveals crucial insights into the mechanisms of motor recovery. These findings suggest that metrics of dynamic network reorganization, particularly global network switching rate, may offer a robust predictor of motor recovery.</p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2024 ","pages":"9932927"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707127/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/np/9932927","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The investigation of brain functional network dynamics offers a promising approach to understanding network reorganization poststroke. This study aims to explore the dynamic network configurations associated with motor recovery in stroke patients and assess their predictive potential using multilayer network analysis. Methods: Resting-state functional magnetic resonance imaging data were collected from patients with subacute stroke within 2 weeks of onset and from matched healthy controls (HCs). Group-independent component analysis and a sliding window approach were utilized to construct dynamic functional networks. A multilayer network model was applied to quantify the switching rates of individual nodes, subnetworks, and the global network across the dynamic network. Correlation analyses assessed the relationship between switching rates and motor function recovery, while linear regression models evaluated the predictive potential of global network switching rate on motor recovery outcomes. Results: Stroke patients exhibited a significant increase in the switching rates of specific brain regions, including the medial frontal gyrus, precentral gyrus, inferior parietal lobule, anterior cingulate, superior frontal gyrus, and postcentral gyrus, compared to HCs. Additionally, elevated switching rates were observed in the frontoparietal network, default mode network, cerebellar network, and in the global network. These increased switching rates were positively correlated with baseline Fugl-Meyer assessment (FMA) scores and changes in FMA scores at 90 days poststroke. Importantly, the global network's switching rate emerged as a significant predictor of motor recovery in stroke patients. Conclusions: The reorganization of dynamic network configurations in stroke patients reveals crucial insights into the mechanisms of motor recovery. These findings suggest that metrics of dynamic network reorganization, particularly global network switching rate, may offer a robust predictor of motor recovery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑卒中患者动态网络的重组及其预测运动恢复的潜力。
目的:脑功能网络动力学的研究为理解脑卒中后的网络重组提供了一种有希望的途径。本研究旨在探讨与脑卒中患者运动恢复相关的动态网络结构,并利用多层网络分析评估其预测潜力。方法:收集亚急性脑卒中患者发病2周内的静息状态功能磁共振成像数据和匹配的健康对照(hc)。利用群无关分量分析和滑动窗口方法构建动态功能网络。应用多层网络模型量化动态网络中单个节点、子网和全局网络的交换率。相关分析评估了开关率与运动功能恢复之间的关系,而线性回归模型评估了全球网络开关率对运动恢复结果的预测潜力。结果:与hcc相比,卒中患者在特定脑区域的转换率显著增加,包括内侧额回、中央前回、顶叶下小叶、前扣带、额上回和中央后回。此外,在额顶叶网络、默认模式网络、小脑网络和全球网络中观察到更高的转换率。这些增加的转换率与基线Fugl-Meyer评估(FMA)评分和卒中后90天FMA评分的变化呈正相关。重要的是,全球网络的转换率成为中风患者运动恢复的重要预测指标。结论:脑卒中患者动态网络结构的重组揭示了运动恢复机制的重要见解。这些发现表明,动态网络重组的指标,特别是全球网络切换率,可能提供一个强有力的预测运动恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Plasticity
Neural Plasticity NEUROSCIENCES-
CiteScore
6.80
自引率
0.00%
发文量
77
审稿时长
16 weeks
期刊介绍: Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.
期刊最新文献
Fucoxanthin Inhibits the NMDA and AMPA Receptors Through Regulating the Calcium Response on Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Juvenile Mice. Overexpression of SFPQ Improves Cognition and Memory in AD Mice. Long-Term Moderate-Level Noise Exposure Caused Hyperexcitability in the Central Auditory System. Reorganization of Dynamic Network in Stroke Patients and Its Potential for Predicting Motor Recovery. A Novel Rat Infant Model of Medial Temporal Lobe Epilepsy Reveals New Insight into the Molecular Biology and Epileptogenesis in the Developing Brain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1