Altered Static and Dynamic Functional Network Connectivity and Combined Machine Learning in Stroke.

IF 2.3 3区 医学 Q3 CLINICAL NEUROLOGY Brain Topography Pub Date : 2025-01-09 DOI:10.1007/s10548-024-01095-7
Hao Liu, Xin Huang, Yu-Xin Yang, Ri-Bo Chen
{"title":"Altered Static and Dynamic Functional Network Connectivity and Combined Machine Learning in Stroke.","authors":"Hao Liu, Xin Huang, Yu-Xin Yang, Ri-Bo Chen","doi":"10.1007/s10548-024-01095-7","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke is a condition characterized by damage to the cerebral vasculature from various causes, resulting in focal or widespread brain tissue damage. Prior neuroimaging research has demonstrated that individuals with stroke present structural and functional brain abnormalities, evident through disruptions in motor, cognitive, and other vital functions. Nevertheless, there is a lack of studies on alterations in static and dynamic functional network connectivity in the brains of stroke patients. Fifty stroke patients and 50 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning. Initially, the independent component analysis (ICA) method was utilized to extract the resting-state network (RSN). Subsequently, the disparities in static functional network connectivity both within and between networks among the two groups were computed and juxtaposed. Following this, five consistent and robust dynamic functional network connectivity (dFNC) states were derived by integrating the sliding time window method with k-means cluster analysis, and the distinctions in dFNC between the groups across different states, along with the intergroup variations in three dynamic temporal metrics, were assessed. Finally, a support vector machine (SVM) approach was employed to discriminate stroke patients from HCs using FC and FNC as classification features. Comparing the stroke group to the healthy control (HC) group, the stroke group exhibited reduced intra-network functional connectivity (FC) in the right superior temporal gyrus of the ventral attention network (VAN), the left calcarine of the visual network (VN), and the left precuneus of the default mode network (DMN). Regarding static functional network connectivity (FNC), we identified increased connectivity between the executive control network (ECN) and dorsal attention network (DAN), salience network (SN) and DMN, SN-ECN, and VN-ECN, along with decreased connectivity between DAN-DAN, ECN-SN, SN-SN, and DAN-VN between the two groups. Noteworthy differences in dynamic FNC (dFNC) were observed between the groups in states 3 to 5. Moreover, stroke patients demonstrated a significantly higher proportion of time and longer mean dwell time in state 4, alongside a decreased proportion of time in state 5 compared to HC. Finally, utilizing FC and FNC as features, stroke patients could be distinguished from HC with an accuracy exceeding 70% and an area under the curve ranging from 0.8284 to 0.9364. In conclusion, our study reveals static and dynamic changes in large-scale brain networks in stroke patients, potentially linked to abnormalities in visual, cognitive, and motor functions. This investigation offers valuable insights into the neural mechanisms underpinning the functional deficits observed in stroke, thereby aiding in the diagnosis and development of targeted therapeutic interventions for affected individuals.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 2","pages":"21"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-024-01095-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Stroke is a condition characterized by damage to the cerebral vasculature from various causes, resulting in focal or widespread brain tissue damage. Prior neuroimaging research has demonstrated that individuals with stroke present structural and functional brain abnormalities, evident through disruptions in motor, cognitive, and other vital functions. Nevertheless, there is a lack of studies on alterations in static and dynamic functional network connectivity in the brains of stroke patients. Fifty stroke patients and 50 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning. Initially, the independent component analysis (ICA) method was utilized to extract the resting-state network (RSN). Subsequently, the disparities in static functional network connectivity both within and between networks among the two groups were computed and juxtaposed. Following this, five consistent and robust dynamic functional network connectivity (dFNC) states were derived by integrating the sliding time window method with k-means cluster analysis, and the distinctions in dFNC between the groups across different states, along with the intergroup variations in three dynamic temporal metrics, were assessed. Finally, a support vector machine (SVM) approach was employed to discriminate stroke patients from HCs using FC and FNC as classification features. Comparing the stroke group to the healthy control (HC) group, the stroke group exhibited reduced intra-network functional connectivity (FC) in the right superior temporal gyrus of the ventral attention network (VAN), the left calcarine of the visual network (VN), and the left precuneus of the default mode network (DMN). Regarding static functional network connectivity (FNC), we identified increased connectivity between the executive control network (ECN) and dorsal attention network (DAN), salience network (SN) and DMN, SN-ECN, and VN-ECN, along with decreased connectivity between DAN-DAN, ECN-SN, SN-SN, and DAN-VN between the two groups. Noteworthy differences in dynamic FNC (dFNC) were observed between the groups in states 3 to 5. Moreover, stroke patients demonstrated a significantly higher proportion of time and longer mean dwell time in state 4, alongside a decreased proportion of time in state 5 compared to HC. Finally, utilizing FC and FNC as features, stroke patients could be distinguished from HC with an accuracy exceeding 70% and an area under the curve ranging from 0.8284 to 0.9364. In conclusion, our study reveals static and dynamic changes in large-scale brain networks in stroke patients, potentially linked to abnormalities in visual, cognitive, and motor functions. This investigation offers valuable insights into the neural mechanisms underpinning the functional deficits observed in stroke, thereby aiding in the diagnosis and development of targeted therapeutic interventions for affected individuals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain Topography
Brain Topography 医学-临床神经学
CiteScore
4.70
自引率
7.40%
发文量
41
审稿时长
3 months
期刊介绍: Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.
期刊最新文献
Altered Static and Dynamic Functional Network Connectivity and Combined Machine Learning in Stroke. Network Abnormalities in Ischemic Stroke: A Meta-analysis of Resting-State Functional Connectivity. Distinctive Neural Substrates of low and high Risky Decision Making: Evidence from the Balloon Analog Risk Task. Brain Function and Structure Changes in the Prognosis Prediction of Prolonged Disorders of Consciousness. A Multivariate and Network Analysis Uncovers a Long-Term Influence of Exclusive Breastfeeding on the Development of Brain Morphology and Structural Connectivity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1