Cyprien A Rivier, Santiago Clocchiatti-Tuozzo, Shufan Huo, Victor Torres-Lopez, Daniela Renedo, Kevin N Sheth, Guido J Falcone, Julian N Acosta
{"title":"Genal: a Python toolkit for genetic risk scoring and Mendelian randomization.","authors":"Cyprien A Rivier, Santiago Clocchiatti-Tuozzo, Shufan Huo, Victor Torres-Lopez, Daniela Renedo, Kevin N Sheth, Guido J Falcone, Julian N Acosta","doi":"10.1093/bioadv/vbae207","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The expansion of genetic association data from genome-wide association studies has increased the importance of methodologies like Polygenic Risk Scores (PRS) and Mendelian Randomization (MR) in genetic epidemiology. However, their application is often impeded by complex, multi-step workflows requiring specialized expertise and the use of disparate tools with varying data formatting requirements. Existing solutions are frequently standalone packages or command-line based-largely due to dependencies on tools like PLINK-limiting accessibility for researchers without computational experience. Given Python's popularity and ease of use, there is a need for an integrated, user-friendly Python toolkit to streamline PRS and MR analyses.</p><p><strong>Results: </strong>We introduce Genal, a Python package that consolidates SNP-level data handling, cleaning, clumping, PRS computation, and MR analyses into a single, cohesive toolkit. By eliminating the need for multiple R packages and for command-line interaction by wrapping around PLINK, Genal lowers the barrier for medical scientists to perform complex genetic epidemiology studies. Genal draws on concepts from several well-established tools, ensuring that users have access to rigorous statistical techniques in the intuitive Python environment. Additionally, Genal leverages parallel processing for MR methods, including MR-PRESSO, significantly reducing the computational time required for these analyses.</p><p><strong>Availability and implementation: </strong>The package is available on Pypi (https://pypi.org/project/genal-python/), the code is openly available on Github with a tutorial: https://github.com/CypRiv/genal, and the documentation can be found on readthedocs: https://genal.rtfd.io.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbae207"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706532/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation: The expansion of genetic association data from genome-wide association studies has increased the importance of methodologies like Polygenic Risk Scores (PRS) and Mendelian Randomization (MR) in genetic epidemiology. However, their application is often impeded by complex, multi-step workflows requiring specialized expertise and the use of disparate tools with varying data formatting requirements. Existing solutions are frequently standalone packages or command-line based-largely due to dependencies on tools like PLINK-limiting accessibility for researchers without computational experience. Given Python's popularity and ease of use, there is a need for an integrated, user-friendly Python toolkit to streamline PRS and MR analyses.
Results: We introduce Genal, a Python package that consolidates SNP-level data handling, cleaning, clumping, PRS computation, and MR analyses into a single, cohesive toolkit. By eliminating the need for multiple R packages and for command-line interaction by wrapping around PLINK, Genal lowers the barrier for medical scientists to perform complex genetic epidemiology studies. Genal draws on concepts from several well-established tools, ensuring that users have access to rigorous statistical techniques in the intuitive Python environment. Additionally, Genal leverages parallel processing for MR methods, including MR-PRESSO, significantly reducing the computational time required for these analyses.
Availability and implementation: The package is available on Pypi (https://pypi.org/project/genal-python/), the code is openly available on Github with a tutorial: https://github.com/CypRiv/genal, and the documentation can be found on readthedocs: https://genal.rtfd.io.