Efficient scaling of large language models with mixture of experts and 3D analog in-memory computing.

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2025-01-08 DOI:10.1038/s43588-024-00753-x
Julian Büchel, Athanasios Vasilopoulos, William Andrew Simon, Irem Boybat, HsinYu Tsai, Geoffrey W Burr, Hernan Castro, Bill Filipiak, Manuel Le Gallo, Abbas Rahimi, Vijay Narayanan, Abu Sebastian
{"title":"Efficient scaling of large language models with mixture of experts and 3D analog in-memory computing.","authors":"Julian Büchel, Athanasios Vasilopoulos, William Andrew Simon, Irem Boybat, HsinYu Tsai, Geoffrey W Burr, Hernan Castro, Bill Filipiak, Manuel Le Gallo, Abbas Rahimi, Vijay Narayanan, Abu Sebastian","doi":"10.1038/s43588-024-00753-x","DOIUrl":null,"url":null,"abstract":"<p><p>Large language models (LLMs), with their remarkable generative capacities, have greatly impacted a range of fields, but they face scalability challenges due to their large parameter counts, which result in high costs for training and inference. The trend of increasing model sizes is exacerbating these challenges, particularly in terms of memory footprint, latency and energy consumption. Here we explore the deployment of 'mixture of experts' (MoEs) networks-networks that use conditional computing to keep computational demands low despite having many parameters-on three-dimensional (3D) non-volatile memory (NVM)-based analog in-memory computing (AIMC) hardware. When combined with the MoE architecture, this hardware, utilizing stacked NVM devices arranged in a crossbar array, offers a solution to the parameter-fetching bottleneck typical in traditional models deployed on conventional von-Neumann-based architectures. By simulating the deployment of MoEs on an abstract 3D AIMC system, we demonstrate that, due to their conditional compute mechanism, MoEs are inherently better suited to this hardware than conventional, dense model architectures. Our findings suggest that MoEs, in conjunction with emerging 3D NVM-based AIMC, can substantially reduce the inference costs of state-of-the-art LLMs, making them more accessible and energy-efficient.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-024-00753-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs), with their remarkable generative capacities, have greatly impacted a range of fields, but they face scalability challenges due to their large parameter counts, which result in high costs for training and inference. The trend of increasing model sizes is exacerbating these challenges, particularly in terms of memory footprint, latency and energy consumption. Here we explore the deployment of 'mixture of experts' (MoEs) networks-networks that use conditional computing to keep computational demands low despite having many parameters-on three-dimensional (3D) non-volatile memory (NVM)-based analog in-memory computing (AIMC) hardware. When combined with the MoE architecture, this hardware, utilizing stacked NVM devices arranged in a crossbar array, offers a solution to the parameter-fetching bottleneck typical in traditional models deployed on conventional von-Neumann-based architectures. By simulating the deployment of MoEs on an abstract 3D AIMC system, we demonstrate that, due to their conditional compute mechanism, MoEs are inherently better suited to this hardware than conventional, dense model architectures. Our findings suggest that MoEs, in conjunction with emerging 3D NVM-based AIMC, can substantially reduce the inference costs of state-of-the-art LLMs, making them more accessible and energy-efficient.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
A new tool for shape and structure optimization of soft materials. Bridging generations and cultures in mathematics and computer science. Resistive memory-based zero-shot liquid state machine for multimodal event data learning. Efficient scaling of large language models with mixture of experts and 3D analog in-memory computing. Decoupled peak property learning for efficient and interpretable electronic circular dichroism spectrum prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1