PCA-based spatial domain identification with state-of-the-art performance.

Darius P Schaub, Behnam Yousefi, Nico Kaiser, Robin Khatri, Victor G Puelles, Christian F Krebs, Ulf Panzer, Stefan Bonn
{"title":"PCA-based spatial domain identification with state-of-the-art performance.","authors":"Darius P Schaub, Behnam Yousefi, Nico Kaiser, Robin Khatri, Victor G Puelles, Christian F Krebs, Ulf Panzer, Stefan Bonn","doi":"10.1093/bioinformatics/btaf005","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The identification of biologically meaningful domains is a central step in the analysis of spatial transcriptomic data.</p><p><strong>Results: </strong>Following Occam's razor, we show that a simple PCA-based algorithm for unsupervised spatial domain identification rivals the performance of ten competing state-of-the-art methods across six single-cell spatial transcriptomic datasets. Our reductionist approach, NichePCA, provides researchers with intuitive domain interpretation and excels in execution speed, robustness, and scalability.</p><p><strong>Availability and implementation: </strong>The code is available at https://github.com/imsb-uke/nichepca.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761416/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The identification of biologically meaningful domains is a central step in the analysis of spatial transcriptomic data.

Results: Following Occam's razor, we show that a simple PCA-based algorithm for unsupervised spatial domain identification rivals the performance of ten competing state-of-the-art methods across six single-cell spatial transcriptomic datasets. Our reductionist approach, NichePCA, provides researchers with intuitive domain interpretation and excels in execution speed, robustness, and scalability.

Availability and implementation: The code is available at https://github.com/imsb-uke/nichepca.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于pca的高性能空间域识别。
动机:生物学意义域的识别是空间转录组学数据分析的核心步骤。结果:根据Occam的剃刀,我们证明了一个简单的基于pca的无监督空间域识别算法在六个单细胞空间转录组数据集上的性能可以与十种最先进的竞争方法相媲美。我们的简化方法NichePCA为研究人员提供了直观的领域解释,并在执行速度、健壮性和可扩展性方面表现出色。可获得性和实施:代码可在https://github.com/imsb-uke/nichepca.Supplementary信息上获得;补充数据可在Bioinformatics在线上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HTSinfer: Inferring metadata from bulk illumina RNA-Seq libraries. MOSTPLAS: A Self-correction Multi-label Learning Model for Plasmid Host Range Prediction. GCLink: a graph contrastive link prediction framework for gene regulatory network inference. PNL: a software to build polygenic risk scores using a Super Learner approach based on PairNet, a Convolutional Neural Network. TiltRec: An ultra-fast and open-source toolkit for cryo-electron tomographic reconstruction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1