Qiunan Ren, Linge Li, Lei Liu, Juan Li, Chaowei Shi, Yujie Sun, Xuebiao Yao, Zhonghuai Hou, ShengQi Xiang
{"title":"The molecular mechanism of temperature-dependent phase separation of heat shock factor 1","authors":"Qiunan Ren, Linge Li, Lei Liu, Juan Li, Chaowei Shi, Yujie Sun, Xuebiao Yao, Zhonghuai Hou, ShengQi Xiang","doi":"10.1038/s41589-024-01806-y","DOIUrl":null,"url":null,"abstract":"<p>Heat shock factor 1 (HSF1) is the critical orchestrator of cell responses to heat shock, and its dysfunction is linked to various diseases. HSF1 undergoes phase separation upon heat shock, and its activity is regulated by post-translational modifications (PTMs). The molecular details underlying HSF1 phase separation, temperature sensing and PTM regulation remain poorly understood. Here, we discovered that HSF1 exhibits temperature-dependent phase separation with a lower critical solution temperature behavior, providing a new conceptual mechanism accounting for HSF1 activation. We revealed the residue-level molecular details of the interactions driving the phase separation of wild-type HSF1 and its distinct PTM patterns at various temperatures. The mapped interfaces were validated experimentally and accounted for the reported HSF1 functions. Importantly, the molecular grammar of temperature-dependent HSF1 phase separation is species specific and physiologically relevant. These findings delineate a chemical code that integrates accurate phase separation with physiological body temperature control in animals.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"6 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-024-01806-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Heat shock factor 1 (HSF1) is the critical orchestrator of cell responses to heat shock, and its dysfunction is linked to various diseases. HSF1 undergoes phase separation upon heat shock, and its activity is regulated by post-translational modifications (PTMs). The molecular details underlying HSF1 phase separation, temperature sensing and PTM regulation remain poorly understood. Here, we discovered that HSF1 exhibits temperature-dependent phase separation with a lower critical solution temperature behavior, providing a new conceptual mechanism accounting for HSF1 activation. We revealed the residue-level molecular details of the interactions driving the phase separation of wild-type HSF1 and its distinct PTM patterns at various temperatures. The mapped interfaces were validated experimentally and accounted for the reported HSF1 functions. Importantly, the molecular grammar of temperature-dependent HSF1 phase separation is species specific and physiologically relevant. These findings delineate a chemical code that integrates accurate phase separation with physiological body temperature control in animals.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.