Engineered Mycobacterium tuberculosis triple-kill-switch strain provides controlled tuberculosis infection in animal models

IF 20.5 1区 生物学 Q1 MICROBIOLOGY Nature Microbiology Pub Date : 2025-01-10 DOI:10.1038/s41564-024-01913-5
Xin Wang, Hongwei Su, Joshua B. Wallach, Jeffrey C. Wagner, Benjamin J. Braunecker, Michelle Gardner, Kristine M. Guinn, Nicole C. Howard, Thais Klevorn, Kan Lin, Yue J. Liu, Yao Liu, Douaa Mugahid, Mark Rodgers, Jaimie Sixsmith, Shoko Wakabayashi, Junhao Zhu, Matthew Zimmerman, Véronique Dartois, JoAnne L. Flynn, Philana Ling Lin, Sabine Ehrt, Sarah M. Fortune, Eric J. Rubin, Dirk Schnappinger
{"title":"Engineered Mycobacterium tuberculosis triple-kill-switch strain provides controlled tuberculosis infection in animal models","authors":"Xin Wang, Hongwei Su, Joshua B. Wallach, Jeffrey C. Wagner, Benjamin J. Braunecker, Michelle Gardner, Kristine M. Guinn, Nicole C. Howard, Thais Klevorn, Kan Lin, Yue J. Liu, Yao Liu, Douaa Mugahid, Mark Rodgers, Jaimie Sixsmith, Shoko Wakabayashi, Junhao Zhu, Matthew Zimmerman, Véronique Dartois, JoAnne L. Flynn, Philana Ling Lin, Sabine Ehrt, Sarah M. Fortune, Eric J. Rubin, Dirk Schnappinger","doi":"10.1038/s41564-024-01913-5","DOIUrl":null,"url":null,"abstract":"<p>Human challenge experiments could accelerate tuberculosis vaccine development. This requires a safe <i>Mycobacterium tuberculosis</i> (Mtb) strain that can both replicate in the host and be reliably cleared. Here we genetically engineered Mtb strains encoding up to three kill switches: two mycobacteriophage lysin operons negatively regulated by tetracycline and a degron domain–NadE fusion, which induces ClpC1-dependent degradation of the essential enzyme NadE, negatively regulated by trimethoprim. The triple-kill-switch (TKS) strain showed similar growth kinetics and antibiotic susceptibilities to wild-type Mtb under permissive conditions but was rapidly killed in vitro without trimethoprim and doxycycline. It established infection in mice receiving antibiotics but was rapidly cleared upon cessation of treatment, and no relapse was observed in infected severe combined immunodeficiency mice or Rag<sup>−/−</sup> mice. The TKS strain had an escape mutation rate of less than 10<sup>−10</sup> per genome per generation. These findings suggest that the TKS strain could be a safe, effective candidate for a human challenge model.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"25 1","pages":""},"PeriodicalIF":20.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41564-024-01913-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Human challenge experiments could accelerate tuberculosis vaccine development. This requires a safe Mycobacterium tuberculosis (Mtb) strain that can both replicate in the host and be reliably cleared. Here we genetically engineered Mtb strains encoding up to three kill switches: two mycobacteriophage lysin operons negatively regulated by tetracycline and a degron domain–NadE fusion, which induces ClpC1-dependent degradation of the essential enzyme NadE, negatively regulated by trimethoprim. The triple-kill-switch (TKS) strain showed similar growth kinetics and antibiotic susceptibilities to wild-type Mtb under permissive conditions but was rapidly killed in vitro without trimethoprim and doxycycline. It established infection in mice receiving antibiotics but was rapidly cleared upon cessation of treatment, and no relapse was observed in infected severe combined immunodeficiency mice or Rag−/− mice. The TKS strain had an escape mutation rate of less than 10−10 per genome per generation. These findings suggest that the TKS strain could be a safe, effective candidate for a human challenge model.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工程结核分枝杆菌三杀伤开关菌株在动物模型中提供控制结核感染
人体挑战实验可以加速结核病疫苗的开发。这需要一种安全的结核分枝杆菌(Mtb)菌株,既能在宿主体内复制,又能被可靠地清除。在这里,我们对Mtb菌株进行基因工程改造,编码多达三个杀死开关:两个由四环素负调控的分枝噬菌体溶酶操纵子和一个降解结构域NadE融合,诱导必需酶NadE的clpc1依赖性降解,由甲氧苄啶负调控。三杀开关(TKS)菌株在允许条件下表现出与野生型Mtb相似的生长动力学和抗生素敏感性,但在体外不加甲氧苄氨嘧啶和强力霉素的情况下迅速被杀死。它在接受抗生素治疗的小鼠中建立感染,但在停止治疗后迅速清除,在感染的严重联合免疫缺陷小鼠或Rag - / -小鼠中未观察到复发。TKS菌株每代每个基因组的逃逸突变率小于10−10。这些发现表明,TKS菌株可能是一种安全、有效的人体挑战模型候选菌株。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Microbiology
Nature Microbiology Immunology and Microbiology-Microbiology
CiteScore
44.40
自引率
1.10%
发文量
226
期刊介绍: Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes: Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time. Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes. Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments. Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation. In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.
期刊最新文献
Integrons are anti-phage defence libraries in Vibrio parahaemolyticus Engineering mycobacteria for vaccination and controlled human infection studies Explainable artificial intelligence evolves antimicrobial peptides A gut microorganism turns the dial on sugar intake Predicting child health with gut microbiome development trajectories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1