{"title":"Decoding general error correcting codes and the role of complementarity","authors":"Yoshifumi Nakata, Takaya Matsuura, Masato Koashi","doi":"10.1038/s41534-024-00951-5","DOIUrl":null,"url":null,"abstract":"<p>Among various classes of quantum error correcting codes (QECCs), non-stabilizer codes have rich properties and are of theoretical and practical interest. Decoding non-stabilizer codes is, however, a highly non-trivial task. In this paper, we show that a decoding circuit for Calderbank-Shor-Steane (CSS) codes can be straightforwardly extended to handle general QECCs. The key to the extension lies in the use of a pair of classical-quantum (CQ) codes associated with the QECC to be decoded. The decoding error of the proposed decoding circuit depends on the classical decoding errors of the CQ codes and their degree of complementarity. We demonstrate the power of the decoding circuit in a toy model of the black hole information paradox, improving decoding errors compared to previous results. In addition, we reveal that black hole dynamics may optimally encode quantum information but poorly encode classical information.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"129 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00951-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Among various classes of quantum error correcting codes (QECCs), non-stabilizer codes have rich properties and are of theoretical and practical interest. Decoding non-stabilizer codes is, however, a highly non-trivial task. In this paper, we show that a decoding circuit for Calderbank-Shor-Steane (CSS) codes can be straightforwardly extended to handle general QECCs. The key to the extension lies in the use of a pair of classical-quantum (CQ) codes associated with the QECC to be decoded. The decoding error of the proposed decoding circuit depends on the classical decoding errors of the CQ codes and their degree of complementarity. We demonstrate the power of the decoding circuit in a toy model of the black hole information paradox, improving decoding errors compared to previous results. In addition, we reveal that black hole dynamics may optimally encode quantum information but poorly encode classical information.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.