Fluorescence Lifetime Imaging-Guided Photodynamic Therapy over Two-Photon Responsive Metal-Organic Frameworks

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Frontiers Pub Date : 2025-01-11 DOI:10.1039/d4qi03014a
Bo Li, Xin Lu, Xianshun Sun, Yupeng Tian, Zijuan Hai, Dandan Li, Hong-Ping Zhou
{"title":"Fluorescence Lifetime Imaging-Guided Photodynamic Therapy over Two-Photon Responsive Metal-Organic Frameworks","authors":"Bo Li, Xin Lu, Xianshun Sun, Yupeng Tian, Zijuan Hai, Dandan Li, Hong-Ping Zhou","doi":"10.1039/d4qi03014a","DOIUrl":null,"url":null,"abstract":"In the realm of photodynamic therapy (PDT), the incorporation of real-time feedback through two-photon fluorescence lifetime imaging poses a significant challenge, primarily due to the intricate nature of photosensitizer design. In our investigation, we have effectively constructed a versatile platform labeled as ZTBH using a post-ligand modification approach, resulting in enhanced two-photon fluorescence capabilities and notable responsiveness of fluorescence lifetime to variations in the cellular microenvironment. The distinctive synergy between intersystem crossing and linker-to-cluster charge transfer within ZTBH empowers the generation of ample reactive oxygen species (1O2 and O2•-), thereby yielding remarkable efficiency in PDT. Moreover, the capping of hyaluronic acid (HA) through coordination method confers ZTBH with cancer-specific targeting properties. Subsequently, with the aid of a two-photon fluorescence lifetime imaging microscope (TP-FLIM), ZTBH not only achieves successful two-photon photodynamic therapy but also enables real-time visualization of cellular microenvironment changes throughout the apoptosis process. This investigation underscores a viable approach in the creation of two-photon fluorescence lifetime photosensitizers for visualizing the PDT procedure.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"36 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi03014a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of photodynamic therapy (PDT), the incorporation of real-time feedback through two-photon fluorescence lifetime imaging poses a significant challenge, primarily due to the intricate nature of photosensitizer design. In our investigation, we have effectively constructed a versatile platform labeled as ZTBH using a post-ligand modification approach, resulting in enhanced two-photon fluorescence capabilities and notable responsiveness of fluorescence lifetime to variations in the cellular microenvironment. The distinctive synergy between intersystem crossing and linker-to-cluster charge transfer within ZTBH empowers the generation of ample reactive oxygen species (1O2 and O2•-), thereby yielding remarkable efficiency in PDT. Moreover, the capping of hyaluronic acid (HA) through coordination method confers ZTBH with cancer-specific targeting properties. Subsequently, with the aid of a two-photon fluorescence lifetime imaging microscope (TP-FLIM), ZTBH not only achieves successful two-photon photodynamic therapy but also enables real-time visualization of cellular microenvironment changes throughout the apoptosis process. This investigation underscores a viable approach in the creation of two-photon fluorescence lifetime photosensitizers for visualizing the PDT procedure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
期刊最新文献
Transformable Cis-trans Isomerism of Ruthenium (II) Complexes with Photoactivated Anticancer Activity Fluorescence Lifetime Imaging-Guided Photodynamic Therapy over Two-Photon Responsive Metal-Organic Frameworks Strategic design of vacancies and phase in flexible MoS2 for boosting triiodide reduction performance Recent advances in computational modelling of mononuclear actinide single molecule magnets A novel benzothiazole-1,2,3-triazole-based arene osmium(II) complex as an effective rhabdomyosarcoma cancer stem cell agent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1