Junjie Ma, Zhihui Wang, Ben Niu, Wei Wang, Hui Wang
{"title":"Optically Decoupling Electrochromic Dynamics and In Situ Morphological Evolution of a Single Soft Polyaniline Nanoentity","authors":"Junjie Ma, Zhihui Wang, Ben Niu, Wei Wang, Hui Wang","doi":"10.1021/acs.nanolett.4c03864","DOIUrl":null,"url":null,"abstract":"Electroresponsive multicolored materials have tremendous potential in flexible electronics and smart wearable devices. Herein, the electrochromic dynamics and <i>in situ</i> morphological evolution of a single soft polyaniline nanoentity can be visualized and decoupled by an opto-electrochemical imaging strategy. The durability, tinting speed, and reversibility down to the single-nanoparticle level are quantified, and the switching of transient intermediate electrochromic states is trapped. The mechanistic studies suggest that the heterogeneity of electrochromic activity is attributed to the nonuniformity of the polymer network interspersed at the nanometric level. Furthermore, the representative Pauli repulsion effect is uncovered from the self-stretching behavior of the conductive state of polyaniline at the oxidized potential. It provides novel insights for advancing high-performance electrochromic devices and flexible strain sensors, which can be dynamically manipulated by external stimuli.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"11 suppl_1 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03864","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electroresponsive multicolored materials have tremendous potential in flexible electronics and smart wearable devices. Herein, the electrochromic dynamics and in situ morphological evolution of a single soft polyaniline nanoentity can be visualized and decoupled by an opto-electrochemical imaging strategy. The durability, tinting speed, and reversibility down to the single-nanoparticle level are quantified, and the switching of transient intermediate electrochromic states is trapped. The mechanistic studies suggest that the heterogeneity of electrochromic activity is attributed to the nonuniformity of the polymer network interspersed at the nanometric level. Furthermore, the representative Pauli repulsion effect is uncovered from the self-stretching behavior of the conductive state of polyaniline at the oxidized potential. It provides novel insights for advancing high-performance electrochromic devices and flexible strain sensors, which can be dynamically manipulated by external stimuli.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.