Ghewa AlSabeh, Vladislav Slama, Ming Ren, Masaud Almalki, Lukas Pfeifer, Dominik J. Kubicki, Paul Zimmermann, Alexander Hinderhofer, Fabiola Faini, Davide Moia, Mostafa Othman, Felix T. Eickemeyer, Virginia Carnevali, Nikolaos Lempesis, Andrea Vezzosi, Fatemeh Ansari, Frank Schreiber, Joachim Maier, Christian M. Wolff, Aïcha Hessler-Wyser, Christophe Ballif, Giulia Grancini, Ursula Rothlisberger, Michael Grätzel, Jovana V. Milic
{"title":"Aryl‐Acetylene Layered Hybrid Perovskites in Photovoltaics","authors":"Ghewa AlSabeh, Vladislav Slama, Ming Ren, Masaud Almalki, Lukas Pfeifer, Dominik J. Kubicki, Paul Zimmermann, Alexander Hinderhofer, Fabiola Faini, Davide Moia, Mostafa Othman, Felix T. Eickemeyer, Virginia Carnevali, Nikolaos Lempesis, Andrea Vezzosi, Fatemeh Ansari, Frank Schreiber, Joachim Maier, Christian M. Wolff, Aïcha Hessler-Wyser, Christophe Ballif, Giulia Grancini, Ursula Rothlisberger, Michael Grätzel, Jovana V. Milic","doi":"10.1002/anie.202417432","DOIUrl":null,"url":null,"abstract":"Metal halide perovskites have shown exceptional potential in converting solar energy to electric power in photovoltaics, yet their application is hampered by limited operational stability. This stimulated the development of hybrid layered (two‐dimensional, 2D) halide perovskites based on hydrophobic organic spacers, templating perovskite slabs, as a more stable alternative. However, conventional organic spacer cations are electronically insulating, resulting in charge confinement within the inorganic slabs, thus limiting their functionality. This can be ameliorated by extending the π‐conjugation of the spacer cations. We demonstrate the capacity to access Ruddlesden‐Popper and Dion‐Jacobson 2D perovskites incorporating for the first time aryl‐acetylene‐based (4‐ethynylphenyl)methylammonium (BMAA) and buta‐1,3‐diyne‐1,4‐diylbis(4,1‐phenylene)dimethylammonium (BDAA) spacers, respectively. We assess their unique opto(electro)ionic characteristics by a combination of techniques and apply them in mixed‐dimensional perovskite solar cells that show superior device performances with a power conversion efficiency of up to 23% and higher operational stability, opening the way for multifunctionality in layered hybrid materials and their application.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"36 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417432","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Metal halide perovskites have shown exceptional potential in converting solar energy to electric power in photovoltaics, yet their application is hampered by limited operational stability. This stimulated the development of hybrid layered (two‐dimensional, 2D) halide perovskites based on hydrophobic organic spacers, templating perovskite slabs, as a more stable alternative. However, conventional organic spacer cations are electronically insulating, resulting in charge confinement within the inorganic slabs, thus limiting their functionality. This can be ameliorated by extending the π‐conjugation of the spacer cations. We demonstrate the capacity to access Ruddlesden‐Popper and Dion‐Jacobson 2D perovskites incorporating for the first time aryl‐acetylene‐based (4‐ethynylphenyl)methylammonium (BMAA) and buta‐1,3‐diyne‐1,4‐diylbis(4,1‐phenylene)dimethylammonium (BDAA) spacers, respectively. We assess their unique opto(electro)ionic characteristics by a combination of techniques and apply them in mixed‐dimensional perovskite solar cells that show superior device performances with a power conversion efficiency of up to 23% and higher operational stability, opening the way for multifunctionality in layered hybrid materials and their application.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.