Jinmin Zhou, Houxuan Li, Shuhong Li, Yuhan Wang, He Wang, Jie Li, Yiyao Hu, Jinlin Song, Jichun Yang, Yang Luo
{"title":"Convertible Hydrogel Injection Sequentially Regulates Diabetic Periodontitis.","authors":"Jinmin Zhou, Houxuan Li, Shuhong Li, Yuhan Wang, He Wang, Jie Li, Yiyao Hu, Jinlin Song, Jichun Yang, Yang Luo","doi":"10.1021/acsbiomaterials.4c01784","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes exacerbates periodontitis by overexpressing reactive oxygen species (ROS), which leads to periodontal bone resorption. Consequently, it is imperative to relieve inflammation and promote alveolar bone regeneration comprehensively for the development of diabetic periodontal treatment strategies. Furthermore, an orderly treatment to avoid interference between these two processes can achieve the optimal therapeutic effect. Thus, we constructed a sequential sustained release system based on the zeolitic imidazolate framework-8 (ZIF-8)-modified chitosan thermosensitive hydrogel (TOOTH) for diabetic periodontal therapy in this work. Chemically modified tetracycline-3 (CMT-3) and platelet-derived growth factor-BB (PDGF-BB) were loaded in the hydrogel and ZIF-8 for sequential release, respectively, with the aim of reducing inflammation and facilitating tissue regeneration. During the therapy, CMT-3 first escaped from the hydrogel due to degradation and diffusion for ROS elimination. Subsequently, ZIF-8 was dissociated under an acid microenvironment, and PDGF-BB was sustainably released to promote osteogenesis. The release intervals between CMT-3 and PDGF-BB could be regulated by the sizes of ZIF-8. The biocompatible TOOTH exhibited a favorable therapeutic effect for diabetic periodontitis in vitro and in vivo. The sequentially controlled release of CMT-3 and PDGF-BB facilitated by TOOTH holds promise for promoting periodontal tissue regeneration and offers potential for clinical translation.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01784","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes exacerbates periodontitis by overexpressing reactive oxygen species (ROS), which leads to periodontal bone resorption. Consequently, it is imperative to relieve inflammation and promote alveolar bone regeneration comprehensively for the development of diabetic periodontal treatment strategies. Furthermore, an orderly treatment to avoid interference between these two processes can achieve the optimal therapeutic effect. Thus, we constructed a sequential sustained release system based on the zeolitic imidazolate framework-8 (ZIF-8)-modified chitosan thermosensitive hydrogel (TOOTH) for diabetic periodontal therapy in this work. Chemically modified tetracycline-3 (CMT-3) and platelet-derived growth factor-BB (PDGF-BB) were loaded in the hydrogel and ZIF-8 for sequential release, respectively, with the aim of reducing inflammation and facilitating tissue regeneration. During the therapy, CMT-3 first escaped from the hydrogel due to degradation and diffusion for ROS elimination. Subsequently, ZIF-8 was dissociated under an acid microenvironment, and PDGF-BB was sustainably released to promote osteogenesis. The release intervals between CMT-3 and PDGF-BB could be regulated by the sizes of ZIF-8. The biocompatible TOOTH exhibited a favorable therapeutic effect for diabetic periodontitis in vitro and in vivo. The sequentially controlled release of CMT-3 and PDGF-BB facilitated by TOOTH holds promise for promoting periodontal tissue regeneration and offers potential for clinical translation.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture