Ryan Chaban, Ikechukwu Ileka, Kohei Kinoshita, Gannon McGrath, Zahra Habibabady, Madelyn Ma, Victoria Diaz, Akihiro Maenaka, Ivy Rosales, Seth Lederman, Victor Tkachev, Joren C Madsen, Richard N Pierson
{"title":"Enhanced Costimulation Blockade With αCD154, αCD2, and αCD28 to Promote Heart Allograft Tolerance in Nonhuman Primates.","authors":"Ryan Chaban, Ikechukwu Ileka, Kohei Kinoshita, Gannon McGrath, Zahra Habibabady, Madelyn Ma, Victoria Diaz, Akihiro Maenaka, Ivy Rosales, Seth Lederman, Victor Tkachev, Joren C Madsen, Richard N Pierson","doi":"10.1097/TP.0000000000005315","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Long-term renal allograft acceptance has been achieved in macaques using a transient mixed hematopoetic chimerism protocol, but similar regimens have proven unsuccessful in heart allograft recipients unless a kidney transplant was performed simultaneously. Here, we test whether a modified protocol based on targeting CD154, CD2, and CD28 is sufficient to prolong heart allograft acceptance or promote the expansion of regulatory T cells.</p><p><strong>Methods: </strong>Eight macaques underwent heterotopic allo-heart transplantation from major histocompatibility complex-mismatched donors. Induction treatment for donor bone marrow transplantation (BMT) was administered after a 4-mo delay period under TNX-1500 monotherapy. The BMT induction regimen comprised 1 (group 1, G1; n = 3) or 2 (group 2, G2; n = 5) doses of total body irradiation, thymic irradiation, and antithymocyte globulin, followed by 2 (G1) or 5 (G2) weekly doses of αCD2 and 5 weekly treatments with αCD28 and TNX-1500.</p><p><strong>Results: </strong>During the delay period, 1 G1 graft was rejected and 2 (1 in each group) exhibited moderate rejection on protocol biopsy before BMT. Lymphocyte chimerism was seen in 3 of 5 G2 animals and in 1 of 2 G1 recipients. One G1 graft was rejected despite chimerism, whereas the other recipient succumbed to anti-cytomegalovirus treatment. Two G2 monkeys succumbed due to infection (cytomegalovirus, bacteremia) post-BMT and 3 due to posttransplantation lymphoproliferative disease.</p><p><strong>Conclusions: </strong>Intensive costimulation pathway blockade with αCD2, αCD154, and αCD28 promotes lymphocyte chimerism at the cost of high incidence of posttransplantation lymphoproliferative disease and opportunistic infections, preventing assessment of the effectiveness of the regimen to promote alloimmune tolerance.</p>","PeriodicalId":23316,"journal":{"name":"Transplantation","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/TP.0000000000005315","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Long-term renal allograft acceptance has been achieved in macaques using a transient mixed hematopoetic chimerism protocol, but similar regimens have proven unsuccessful in heart allograft recipients unless a kidney transplant was performed simultaneously. Here, we test whether a modified protocol based on targeting CD154, CD2, and CD28 is sufficient to prolong heart allograft acceptance or promote the expansion of regulatory T cells.
Methods: Eight macaques underwent heterotopic allo-heart transplantation from major histocompatibility complex-mismatched donors. Induction treatment for donor bone marrow transplantation (BMT) was administered after a 4-mo delay period under TNX-1500 monotherapy. The BMT induction regimen comprised 1 (group 1, G1; n = 3) or 2 (group 2, G2; n = 5) doses of total body irradiation, thymic irradiation, and antithymocyte globulin, followed by 2 (G1) or 5 (G2) weekly doses of αCD2 and 5 weekly treatments with αCD28 and TNX-1500.
Results: During the delay period, 1 G1 graft was rejected and 2 (1 in each group) exhibited moderate rejection on protocol biopsy before BMT. Lymphocyte chimerism was seen in 3 of 5 G2 animals and in 1 of 2 G1 recipients. One G1 graft was rejected despite chimerism, whereas the other recipient succumbed to anti-cytomegalovirus treatment. Two G2 monkeys succumbed due to infection (cytomegalovirus, bacteremia) post-BMT and 3 due to posttransplantation lymphoproliferative disease.
Conclusions: Intensive costimulation pathway blockade with αCD2, αCD154, and αCD28 promotes lymphocyte chimerism at the cost of high incidence of posttransplantation lymphoproliferative disease and opportunistic infections, preventing assessment of the effectiveness of the regimen to promote alloimmune tolerance.
期刊介绍:
The official journal of The Transplantation Society, and the International Liver Transplantation Society, Transplantation is published monthly and is the most cited and influential journal in the field, with more than 25,000 citations per year.
Transplantation has been the trusted source for extensive and timely coverage of the most important advances in transplantation for over 50 years. The Editors and Editorial Board are an international group of research and clinical leaders that includes many pioneers of the field, representing a diverse range of areas of expertise. This capable editorial team provides thoughtful and thorough peer review, and delivers rapid, careful and insightful editorial evaluation of all manuscripts submitted to the journal.
Transplantation is committed to rapid review and publication. The journal remains competitive with a time to first decision of fewer than 21 days. Transplantation was the first in the field to offer CME credit to its peer reviewers for reviews completed.
The journal publishes original research articles in original clinical science and original basic science. Short reports bring attention to research at the forefront of the field. Other areas covered include cell therapy and islet transplantation, immunobiology and genomics, and xenotransplantation.