Yanling Yang, Yuchen Wang, Danielle E Campbell, Heng-Wei Lee, Wandy Beatty, Leran Wang, Megan Baldridge, Carolina B López
{"title":"SLC35A2 modulates paramyxovirus fusion events during infection.","authors":"Yanling Yang, Yuchen Wang, Danielle E Campbell, Heng-Wei Lee, Wandy Beatty, Leran Wang, Megan Baldridge, Carolina B López","doi":"10.1371/journal.ppat.1012531","DOIUrl":null,"url":null,"abstract":"<p><p>Paramyxoviruses are significant human and animal pathogens that include mumps virus (MuV), Newcastle disease virus (NDV) and the murine parainfluenza virus Sendai (SeV). Despite their importance, few host factors implicated in paramyxovirus infection are known. Using a recombinant SeV expressing destabilized eGFP (rSeVCdseGFP) in a loss-of-function CRISPR screen, we identified the CMP-sialic acid transporter (CST) gene SLC35A1 and the UDP-galactose transporter (UGT) gene SLC35A2 as essential for paramyxovirus infection. As expected, SLC35A1 knockout (KO) cells showed drastic reduction in infections with SeV, NDV and MuV due to the lack of cell surface sialic acids receptors. However, SLC35A2 KO cells revealed unknown critical roles for this factor in virus-cell and cell-to-cell fusion events for the different paramyxoviruses. While UGT was essential for virus-cell fusion during SeV entry to the cell, it was not required for NDV or MuV entry. Importantly, UGT promoted the formation of syncytia during MuV infection, suggesting a role in cell-to-cell virus spread. Our findings demonstrate that paramyxoviruses can bind to or enter A549 cells in the absence of canonical galactose-bound sialic-acid decorations and show that UGT facilitates paramyxovirus fusion processes involved in entry and spread.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 1","pages":"e1012531"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012531","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Paramyxoviruses are significant human and animal pathogens that include mumps virus (MuV), Newcastle disease virus (NDV) and the murine parainfluenza virus Sendai (SeV). Despite their importance, few host factors implicated in paramyxovirus infection are known. Using a recombinant SeV expressing destabilized eGFP (rSeVCdseGFP) in a loss-of-function CRISPR screen, we identified the CMP-sialic acid transporter (CST) gene SLC35A1 and the UDP-galactose transporter (UGT) gene SLC35A2 as essential for paramyxovirus infection. As expected, SLC35A1 knockout (KO) cells showed drastic reduction in infections with SeV, NDV and MuV due to the lack of cell surface sialic acids receptors. However, SLC35A2 KO cells revealed unknown critical roles for this factor in virus-cell and cell-to-cell fusion events for the different paramyxoviruses. While UGT was essential for virus-cell fusion during SeV entry to the cell, it was not required for NDV or MuV entry. Importantly, UGT promoted the formation of syncytia during MuV infection, suggesting a role in cell-to-cell virus spread. Our findings demonstrate that paramyxoviruses can bind to or enter A549 cells in the absence of canonical galactose-bound sialic-acid decorations and show that UGT facilitates paramyxovirus fusion processes involved in entry and spread.
期刊介绍:
Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.