Jinsu Kang, Sooheon Cho, Xiaojie Zhang, Bom Lee, Byung Joo Jeong, Kyung Hwan Choi, Jiho Jeon, Sang Hoon Lee, Jae-Hyuk Park, Sang Hyuk Kim, Hak Ki Yu and Jae-Young Choi
{"title":"Chemical vapor transport synthesis of one-dimensional V2PS10 and its application in miniaturized UV sensors†","authors":"Jinsu Kang, Sooheon Cho, Xiaojie Zhang, Bom Lee, Byung Joo Jeong, Kyung Hwan Choi, Jiho Jeon, Sang Hoon Lee, Jae-Hyuk Park, Sang Hyuk Kim, Hak Ki Yu and Jae-Young Choi","doi":"10.1039/D4CE00779D","DOIUrl":null,"url":null,"abstract":"<p >This study investigates low-dimensional materials as a potential solution for the miniaturization of electronic devices, addressing the challenges posed by bulk materials. Our research successfully synthesized high-quality V<small><sub>2</sub></small>PS<small><sub>10</sub></small> crystals using the chemical vapor transport method and confirmed their dispersibility in various solvents and their potential for mechanical exfoliation. In addition, a UV-sensing device was fabricated to evaluate its performance. In particular, at a wavelength of 254 nm, the fabricated V<small><sub>2</sub></small>PS<small><sub>10</sub></small>-based UV sensor exhibited a stable response current of 1.5 pA, demonstrating rapid response characteristics. These results underscore the importance of stable synthesis techniques and highlight the potential of V<small><sub>2</sub></small>PS<small><sub>10</sub></small> as a one-dimensional UV-sensing material, thereby indicating its applicability to miniaturize electronic components.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 3","pages":" 366-371"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d4ce00779d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates low-dimensional materials as a potential solution for the miniaturization of electronic devices, addressing the challenges posed by bulk materials. Our research successfully synthesized high-quality V2PS10 crystals using the chemical vapor transport method and confirmed their dispersibility in various solvents and their potential for mechanical exfoliation. In addition, a UV-sensing device was fabricated to evaluate its performance. In particular, at a wavelength of 254 nm, the fabricated V2PS10-based UV sensor exhibited a stable response current of 1.5 pA, demonstrating rapid response characteristics. These results underscore the importance of stable synthesis techniques and highlight the potential of V2PS10 as a one-dimensional UV-sensing material, thereby indicating its applicability to miniaturize electronic components.