Siham Boumhaouad, Emily A Makowicz, Sejoon Choi, Nezha Bouhaddou, Jihane Balla, Khalid Taghzouti, David Sulzer, Eugene V Mosharov
{"title":"Regulation of Dopamine Release by Tonic Activity Patterns in the Striatal Brain Slice.","authors":"Siham Boumhaouad, Emily A Makowicz, Sejoon Choi, Nezha Bouhaddou, Jihane Balla, Khalid Taghzouti, David Sulzer, Eugene V Mosharov","doi":"10.1021/acschemneuro.4c00323","DOIUrl":null,"url":null,"abstract":"<p><p>Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. <i>Ex vivo</i> acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than <i>in vivo</i> recordings. To investigate the relationship between phasic and tonic neuronal activity, we stimulated the slice in patterns intended to mimic tonic activity, which were interrupted by a series of burst stimuli. Conditioning the striatal slice with low-frequency activity altered DA release triggered by high-frequency bursts and produced kinetic parameters that resemble those <i>in vivo</i>. In the absence of applied tonic activity, nicotinic acetylcholine receptor and D2 DA receptor antagonists had no significant effect on neurotransmitter release, driven by repeated burst activity in the striatal brain slice. In contrast, in tonically stimulated slices, the D2 receptor blockade decreased the amount of DA released during a single-burst and facilitated DA release in subsequent bursts. This experimental system provides a means to reconcile the difference in the kinetics of DA release <i>ex vivo</i> and <i>in vivo</i> and provides a novel approach to more accurately emulate pre- and postsynaptic mechanisms that control axonal DA release <i>in vivo</i>.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00323","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. Ex vivo acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than in vivo recordings. To investigate the relationship between phasic and tonic neuronal activity, we stimulated the slice in patterns intended to mimic tonic activity, which were interrupted by a series of burst stimuli. Conditioning the striatal slice with low-frequency activity altered DA release triggered by high-frequency bursts and produced kinetic parameters that resemble those in vivo. In the absence of applied tonic activity, nicotinic acetylcholine receptor and D2 DA receptor antagonists had no significant effect on neurotransmitter release, driven by repeated burst activity in the striatal brain slice. In contrast, in tonically stimulated slices, the D2 receptor blockade decreased the amount of DA released during a single-burst and facilitated DA release in subsequent bursts. This experimental system provides a means to reconcile the difference in the kinetics of DA release ex vivo and in vivo and provides a novel approach to more accurately emulate pre- and postsynaptic mechanisms that control axonal DA release in vivo.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research