Noninvasive Imaging of Immune Cell Activity in Myocardial Infarction Phases Using 99mTc-HYNIC-mAbKv1.3 SPECT/CT.

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Molecular Pharmaceutics Pub Date : 2025-02-03 Epub Date: 2025-01-11 DOI:10.1021/acs.molpharmaceut.4c00966
Zhengyan Wang, Xiangming Song, Sixuan Cheng, Dawei Jiang, Danzhan Zheng, Xiaoli Lan, Kun Liu, Cheng Fan
{"title":"Noninvasive Imaging of Immune Cell Activity in Myocardial Infarction Phases Using <sup>99m</sup>Tc-HYNIC-mAb<sub>Kv1.3</sub> SPECT/CT.","authors":"Zhengyan Wang, Xiangming Song, Sixuan Cheng, Dawei Jiang, Danzhan Zheng, Xiaoli Lan, Kun Liu, Cheng Fan","doi":"10.1021/acs.molpharmaceut.4c00966","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myocardial infarction (MI) remains a leading cause of mortality worldwide, with inflammatory and reparative phases playing critical roles in disease progression. Currently, there is a pressing need for <i>in vivo</i> imaging techniques to monitor immune cell infiltration and inflammation activity during these phases. We developed a novel probe, <sup>99m</sup>Tc-HYNIC-mAb<sub>Kv1.3</sub>, utilizing a monoclonal antibody that targets the voltage-gated potassium channel 1.3 (Kv1.3). This probe enables <i>in vivo</i> visualization of immune cells that express high levels of Kv1.3 proteins. In a murine MI model, SPECT/CT imaging with <sup>99m</sup>Tc-HYNIC-mAb<sub>Kv1.3</sub> demonstrated specific uptake in an infarcted myocardium during the inflammatory phase, reflecting immune cell infiltration and activity. During the reparative phase, the probe exhibited prolonged retention in the infarcted area, suggestive of ongoing immune cell proliferation. Immunofluorescence staining confirmed the probe's specificity. Biodistribution analysis indicated preferential accumulation in the infarcted myocardium and liver, consistent with SPECT/CT findings. Combined with [<sup>18</sup>F]FDG PET/CT, these modalities provided comprehensive insights into myocardial viability and inflammation. This study highlights the potential of <sup>99m</sup>Tc-HYNIC-mAb<sub>Kv1.3</sub> SPECT/CT as a noninvasive tool to monitor immune cell activity in different phases of MI, guide therapeutic interventions, and predict disease progression. Further translational studies are warranted to explore its clinical applicability in cardiac pathologies.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"817-826"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00966","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Acute myocardial infarction (MI) remains a leading cause of mortality worldwide, with inflammatory and reparative phases playing critical roles in disease progression. Currently, there is a pressing need for in vivo imaging techniques to monitor immune cell infiltration and inflammation activity during these phases. We developed a novel probe, 99mTc-HYNIC-mAbKv1.3, utilizing a monoclonal antibody that targets the voltage-gated potassium channel 1.3 (Kv1.3). This probe enables in vivo visualization of immune cells that express high levels of Kv1.3 proteins. In a murine MI model, SPECT/CT imaging with 99mTc-HYNIC-mAbKv1.3 demonstrated specific uptake in an infarcted myocardium during the inflammatory phase, reflecting immune cell infiltration and activity. During the reparative phase, the probe exhibited prolonged retention in the infarcted area, suggestive of ongoing immune cell proliferation. Immunofluorescence staining confirmed the probe's specificity. Biodistribution analysis indicated preferential accumulation in the infarcted myocardium and liver, consistent with SPECT/CT findings. Combined with [18F]FDG PET/CT, these modalities provided comprehensive insights into myocardial viability and inflammation. This study highlights the potential of 99mTc-HYNIC-mAbKv1.3 SPECT/CT as a noninvasive tool to monitor immune cell activity in different phases of MI, guide therapeutic interventions, and predict disease progression. Further translational studies are warranted to explore its clinical applicability in cardiac pathologies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
99mTc-HYNIC-mAbKv1.3 SPECT/CT对心肌梗死期免疫细胞活性的无创成像
急性心肌梗死(MI)仍然是世界范围内死亡的主要原因,炎症和修复阶段在疾病进展中起着关键作用。目前,迫切需要体内成像技术来监测这些阶段的免疫细胞浸润和炎症活动。我们开发了一种新的探针,99mTc-HYNIC-mAbKv1.3,利用针对电压门控钾通道1.3 (Kv1.3)的单克隆抗体。该探针能够在体内可视化表达高水平Kv1.3蛋白的免疫细胞。在小鼠心肌梗死模型中,99mtc - hyic - mabkv1.3 SPECT/CT成像显示炎症期梗死心肌的特异性摄取,反映了免疫细胞的浸润和活性。在修复阶段,探针在梗死区域停留时间延长,提示免疫细胞正在增殖。免疫荧光染色证实了探针的特异性。生物分布分析显示在梗死心肌和肝脏优先积累,与SPECT/CT结果一致。结合[18F]FDG PET/CT,这些模式提供了对心肌活力和炎症的全面了解。这项研究强调了99mTc-HYNIC-mAbKv1.3 SPECT/CT作为监测心肌梗死不同阶段免疫细胞活性、指导治疗干预和预测疾病进展的无创工具的潜力。进一步的转化研究是必要的,以探索其在心脏病理学的临床适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
期刊最新文献
Development and Evaluation of 68Ga-Labeled TMTP1-Based Cyclic Peptide Probes for Targeting Hepatocellular Carcinoma. Monitoring Sorafenib Resistance and Efficacy in Hepatocellular Carcinoma Using [18F]Alfatide II and [18F]Fluorodeoxyglucose Positron Emission Tomography. Chitosan-Coated Silver Nanourchins for Imatinib Mesylate Delivery: Biophysical Characterization, In-Silico Profiling, and Anti-Colon Cancer Efficacy. Meta-Analysis of Permeability Literature Data Shows Possibilities and Limitations of Popular Methods. Mucin Mimics and Impacts the Function of Polymeric Inhibitors in Stabilizing Drug Supersaturation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1