Zhuang Chen, Yi Luo, Qian Jia, Zuo Yang, Zebing Liu, Can Cui, Chaoqiang Qiao, Peng Yang, Zhongliang Wang
{"title":"NIR-II Fluorescence Imaging-guided Photothermal Activated Pyroptosis For Precision Therapy Of Glioma.","authors":"Zhuang Chen, Yi Luo, Qian Jia, Zuo Yang, Zebing Liu, Can Cui, Chaoqiang Qiao, Peng Yang, Zhongliang Wang","doi":"10.1002/cbic.202400804","DOIUrl":null,"url":null,"abstract":"<p><p>The resistance of cancer cells to apoptosis poses a significant challenge in cancer therapy, driving the exploration of alternative cell death pathways such as pyroptosis, known for its rapid and potent effects. While initial efforts focused on chemotherapy-induced pyroptosis, concerns about systemic inflammation highlight the need for precise activation strategies. Photothermal therapy emerges as a promising non-invasive technique, minimizing pyroptosis-related side effects by targeting tumors spatially and temporally. However, accurately pinpointing tumors to avoid collateral damage remains a challenge. Thus, we utilize NIR-II fluorescence imaging to achieve precise PTT-induced pyroptosis activation in glioma. A polymer semiconductor-based PTT agent was developed with high optical stability, integrated with mesoporous silica to enhance its biocompatibility. These nanoparticles, stabilized through PEG modification and targeted with cRGD peptides, effectively induced pyroptosis in vitro. Furthermore, this design facilitated precise tumor imaging guidance and subsequent pyroptosis activation in vivo, presenting a promising strategy for glioma therapy with minimized adverse effects.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":" ","pages":"e202400804"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202400804","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The resistance of cancer cells to apoptosis poses a significant challenge in cancer therapy, driving the exploration of alternative cell death pathways such as pyroptosis, known for its rapid and potent effects. While initial efforts focused on chemotherapy-induced pyroptosis, concerns about systemic inflammation highlight the need for precise activation strategies. Photothermal therapy emerges as a promising non-invasive technique, minimizing pyroptosis-related side effects by targeting tumors spatially and temporally. However, accurately pinpointing tumors to avoid collateral damage remains a challenge. Thus, we utilize NIR-II fluorescence imaging to achieve precise PTT-induced pyroptosis activation in glioma. A polymer semiconductor-based PTT agent was developed with high optical stability, integrated with mesoporous silica to enhance its biocompatibility. These nanoparticles, stabilized through PEG modification and targeted with cRGD peptides, effectively induced pyroptosis in vitro. Furthermore, this design facilitated precise tumor imaging guidance and subsequent pyroptosis activation in vivo, presenting a promising strategy for glioma therapy with minimized adverse effects.
期刊介绍:
ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).