Xi Chen, Siqi Ji, Pengyue Li, Liwei Zhang, Yihuan Wu, Rob Verpoorte, Yuntao Dai
{"title":"An accurate and robust multicomponent quantitative analysis method: Molar mass coefficient method.","authors":"Xi Chen, Siqi Ji, Pengyue Li, Liwei Zhang, Yihuan Wu, Rob Verpoorte, Yuntao Dai","doi":"10.1016/j.chroma.2024.465644","DOIUrl":null,"url":null,"abstract":"<p><p>Multicomponent quantitative analysis (MCQA) is necessary for comprehensively characterizing the quality of complex samples, including medicines, foods. However, the limited supply of reference substances and the high costs associated with testing hinder the application of the MCQA using the external standard (ES) method. Here we propose a Molar Mass Coefficient (MMC) method for the quantification of multiple compounds with identical chromophore utilizing a single reference compound (SRC) by a UV detector. This method involves establishment of a linear equation of SRC (y<sub>r</sub>=ax<sub>r</sub>+b) with a standard compound r, followed by the derivation of quantitative equations for other components i using the deduced formula (y<sub>i</sub>=(M<sub>r</sub>/M<sub>i</sub>)ax<sub>i</sub>+b). The MMC method introduces only two known physical parameters, specifically the molar mass of compounds r and i, which ensures both the accuracy and practicality of this method. The feasibility of the MMC method was demonstrated with a set of simulated samples containing 17 flavonoids standard compounds, and further validated with samples of Scutellariae Radix and Ginkgo dry extract. The newly established method could accurately quantify flavonoids, yielding results and robustness consistent with the traditional ES method. Notably, for the contents of baicalin and kaempferol, when compared to the results obtained by ES method, the relative standard deviations (RSD%) for the commonly used method were 5.72 % and 4.96 %, respectively, while these values fall down to 0.73 % and 1.02 % when employing the MMC method. The MMC method exhibited significant advantages over existing methods, including high accuracy, robustness and low cost, implying its broad application in different fields.</p>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1742 ","pages":"465644"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.chroma.2024.465644","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Multicomponent quantitative analysis (MCQA) is necessary for comprehensively characterizing the quality of complex samples, including medicines, foods. However, the limited supply of reference substances and the high costs associated with testing hinder the application of the MCQA using the external standard (ES) method. Here we propose a Molar Mass Coefficient (MMC) method for the quantification of multiple compounds with identical chromophore utilizing a single reference compound (SRC) by a UV detector. This method involves establishment of a linear equation of SRC (yr=axr+b) with a standard compound r, followed by the derivation of quantitative equations for other components i using the deduced formula (yi=(Mr/Mi)axi+b). The MMC method introduces only two known physical parameters, specifically the molar mass of compounds r and i, which ensures both the accuracy and practicality of this method. The feasibility of the MMC method was demonstrated with a set of simulated samples containing 17 flavonoids standard compounds, and further validated with samples of Scutellariae Radix and Ginkgo dry extract. The newly established method could accurately quantify flavonoids, yielding results and robustness consistent with the traditional ES method. Notably, for the contents of baicalin and kaempferol, when compared to the results obtained by ES method, the relative standard deviations (RSD%) for the commonly used method were 5.72 % and 4.96 %, respectively, while these values fall down to 0.73 % and 1.02 % when employing the MMC method. The MMC method exhibited significant advantages over existing methods, including high accuracy, robustness and low cost, implying its broad application in different fields.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.