Identifying novel response markers for spinal muscular atrophy revealed by targeted proteomics following gene therapy.

IF 4.6 3区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Gene Therapy Pub Date : 2025-01-10 DOI:10.1038/s41434-025-00513-0
Devesh C Pant, Sumit Verma
{"title":"Identifying novel response markers for spinal muscular atrophy revealed by targeted proteomics following gene therapy.","authors":"Devesh C Pant, Sumit Verma","doi":"10.1038/s41434-025-00513-0","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal muscular atrophy (SMA) is a progressive disease that affects motor neurons, with symptoms usually starting in infancy or early childhood. Recent breakthroughs in treatments targeting SMA have improved both lifespan and quality of life for infants and children with the disease. Given the impact of these treatments, it is essential to develop methods for managing treatment-induced changes in disease characteristics. Zolgensma® is the first effective and approved gene therapy for SMA caused by biallelic mutation in the SMN1 gene. In three children with SMA treated with Zolgensma®, neuronal, glial, inflammation, and vascular markers in the plasma exhibited a quicker response, emphasizing their potential as valuable biomarkers of treatment efficacy in clinical trials. We chose the novel Nucleic acid Linked Immuno-Sandwich Assay, to investigate a predefined panel of neuroinflammatory markers in plasma samples collected from SMA patients at baseline and six months after Zolgensma® treatment. We identified a set of novel targets whose levels differed between pre and post Zolgensma® treatment group and that were responsive to treatment. Even though our results warrant validation in larger SMA cohorts and longer follow-up time, they may pave the way for a panel of responsive proteins solidifying biomarker endpoints in SMA clinical trials.</p>","PeriodicalId":12699,"journal":{"name":"Gene Therapy","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41434-025-00513-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal muscular atrophy (SMA) is a progressive disease that affects motor neurons, with symptoms usually starting in infancy or early childhood. Recent breakthroughs in treatments targeting SMA have improved both lifespan and quality of life for infants and children with the disease. Given the impact of these treatments, it is essential to develop methods for managing treatment-induced changes in disease characteristics. Zolgensma® is the first effective and approved gene therapy for SMA caused by biallelic mutation in the SMN1 gene. In three children with SMA treated with Zolgensma®, neuronal, glial, inflammation, and vascular markers in the plasma exhibited a quicker response, emphasizing their potential as valuable biomarkers of treatment efficacy in clinical trials. We chose the novel Nucleic acid Linked Immuno-Sandwich Assay, to investigate a predefined panel of neuroinflammatory markers in plasma samples collected from SMA patients at baseline and six months after Zolgensma® treatment. We identified a set of novel targets whose levels differed between pre and post Zolgensma® treatment group and that were responsive to treatment. Even though our results warrant validation in larger SMA cohorts and longer follow-up time, they may pave the way for a panel of responsive proteins solidifying biomarker endpoints in SMA clinical trials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基因治疗后靶向蛋白质组学发现脊髓性肌萎缩症的新反应标志物。
脊髓性肌萎缩症(SMA)是一种影响运动神经元的渐进性疾病,通常在婴儿期或儿童早期开始出现症状。最近,针对 SMA 的治疗取得了突破性进展,改善了婴幼儿患者的寿命和生活质量。鉴于这些治疗方法的影响,必须开发出管理治疗引起的疾病特征变化的方法。Zolgensma® 是第一种有效且已获批准的基因疗法,用于治疗由 SMN1 基因双偶联突变引起的 SMA。在接受 Zolgensma® 治疗的三名 SMA 患儿中,血浆中的神经元、神经胶质、炎症和血管标志物都表现出了较快的反应,强调了它们在临床试验中作为有价值的疗效生物标志物的潜力。我们选择了新颖的核酸关联免疫夹心测定法,以研究 SMA 患者在 Zolgensma® 治疗基线和 6 个月后采集的血浆样本中预先确定的神经炎症标记物。我们确定了一组新的靶标,其水平在 Zolgensma® 治疗前和治疗后组间存在差异,并且对治疗有反应。尽管我们的研究结果需要在更大的 SMA 群体和更长的随访时间中进行验证,但这些结果可能为在 SMA 临床试验中确定生物标志物终点的反应蛋白小组铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Gene Therapy
Gene Therapy 医学-生化与分子生物学
CiteScore
9.70
自引率
2.00%
发文量
67
审稿时长
4-8 weeks
期刊介绍: Gene Therapy covers both the research and clinical applications of novel therapeutic techniques based on a genetic component. Over the last few decades, significant advances in technologies ranging from identifying novel genetic targets that cause disease through to clinical studies, which show therapeutic benefit, have elevated this multidisciplinary field to the forefront of modern medicine.
期刊最新文献
Incomplete elimination of viral genomes is associated with chronic inflammation in nonhuman primate livers after AAV-mediated gene transfer. Co-delivery of IL-1Ra and SOX9 via AAV inhibits inflammation and promotes cartilage repair in surgically induced osteoarthritis animal models. Safety, efficacy, and immunogenicity of a novel IgG degrading enzyme (KJ103): results from two randomised, blinded, phase 1 clinical trials. Identifying novel response markers for spinal muscular atrophy revealed by targeted proteomics following gene therapy. Correction: RapaCaspase-9-based suicide gene applied to the safety of IL-1RAP CAR-T cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1