Laminaran potentiates cGAS-STING signaling to enhance antiviral responses

IF 4.8 2区 医学 Q2 IMMUNOLOGY International immunopharmacology Pub Date : 2025-02-06 DOI:10.1016/j.intimp.2025.114014
Lingxiao Xu , Jiao Lyu , Zuocheng Qiu , Qianghui Liu , Huan Hu , Longwei Zhao , Mingyu Pan
{"title":"Laminaran potentiates cGAS-STING signaling to enhance antiviral responses","authors":"Lingxiao Xu ,&nbsp;Jiao Lyu ,&nbsp;Zuocheng Qiu ,&nbsp;Qianghui Liu ,&nbsp;Huan Hu ,&nbsp;Longwei Zhao ,&nbsp;Mingyu Pan","doi":"10.1016/j.intimp.2025.114014","DOIUrl":null,"url":null,"abstract":"<div><div>Cyclic GMP–AMP synthase (cGAS)-Stimulator of interferon genes (STING) signaling pathway, an essential element in the innate antiviral immune responses, has emerged as a key component of innate immune system to modulate type I IFNs production and response by recognizing both exogenous and endogenous DNA. Although some cGAS-STING signaling small molecule agonists have been developed, there are few natural polysaccharides reported to activate cGAS-STING signaling for the treatment of infectious diseases. Here, we reported that Laminaran, a low molecular weight β-glucan storage polysaccharide present in brown algae, potentiates cGAS-STING signaling to promote type I IFNs production and antiviral response. Laminaran enhanced cGAS-STING signaling mediated type I IFNs production and response both in human and murine cells upon HSV-1 infection or DNA mimics stimulation. Importantly, we found that Laminaran markedly inhibited Herpes simplex virus-1 (HSV-1) induced death and inflammatory responses and increased the induction of type I IFNs in C57BL/6J mice. Mechanistically, we found Laminaran inhibited autophagy and suppressed STING autophagic degradation to positively regulate cGAS-STING signaling response. Taken together, we uncovered the function of Laminaran in DNA triggered innate immunity by enhancing cGAS-STING signaling response. Laminaran might be a potential therapeutic candidate for viral infectious diseases.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"147 ","pages":"Article 114014"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576925000037","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclic GMP–AMP synthase (cGAS)-Stimulator of interferon genes (STING) signaling pathway, an essential element in the innate antiviral immune responses, has emerged as a key component of innate immune system to modulate type I IFNs production and response by recognizing both exogenous and endogenous DNA. Although some cGAS-STING signaling small molecule agonists have been developed, there are few natural polysaccharides reported to activate cGAS-STING signaling for the treatment of infectious diseases. Here, we reported that Laminaran, a low molecular weight β-glucan storage polysaccharide present in brown algae, potentiates cGAS-STING signaling to promote type I IFNs production and antiviral response. Laminaran enhanced cGAS-STING signaling mediated type I IFNs production and response both in human and murine cells upon HSV-1 infection or DNA mimics stimulation. Importantly, we found that Laminaran markedly inhibited Herpes simplex virus-1 (HSV-1) induced death and inflammatory responses and increased the induction of type I IFNs in C57BL/6J mice. Mechanistically, we found Laminaran inhibited autophagy and suppressed STING autophagic degradation to positively regulate cGAS-STING signaling response. Taken together, we uncovered the function of Laminaran in DNA triggered innate immunity by enhancing cGAS-STING signaling response. Laminaran might be a potential therapeutic candidate for viral infectious diseases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laminaran增强cGAS-STING信号以增强抗病毒反应。
环GMP-AMP合成酶(cGAS)-干扰素基因刺激因子(STING)信号通路是先天抗病毒免疫应答的重要组成部分,已成为先天免疫系统通过识别外源性和内源性DNA来调节I型ifn产生和应答的关键组成部分。虽然已经开发了一些cGAS-STING信号传导小分子激动剂,但很少有报道称天然多糖可以激活cGAS-STING信号传导以治疗感染性疾病。在这里,我们报道了褐藻中存在的一种低分子量β-葡聚糖储存多糖Laminaran,它可以增强cGAS-STING信号,促进I型ifn的产生和抗病毒反应。Laminaran增强了cGAS-STING信号介导的I型ifn的产生和对HSV-1感染或DNA模拟刺激的反应。重要的是,我们发现Laminaran明显抑制单纯疱疹病毒1 (HSV-1)诱导的C57BL/6J小鼠的死亡和炎症反应,并增加I型ifn的诱导。在机制上,我们发现Laminaran抑制自噬,抑制STING自噬降解,积极调节cGAS-STING信号反应。综上所述,我们揭示了Laminaran通过增强cGAS-STING信号反应在DNA触发先天免疫中的作用。Laminaran可能是一种潜在的治疗病毒性传染病的候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
3.60%
发文量
935
审稿时长
53 days
期刊介绍: International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome. The subject material appropriate for submission includes: • Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders. • Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state. • Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses. • Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action. • Agents that activate genes or modify transcription and translation within the immune response. • Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active. • Production, function and regulation of cytokines and their receptors. • Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.
期刊最新文献
Editorial Board About the ozone ability in using adaptive chaos to restore a healthy state in the oxygen-ozone adjunct therapy Diabetes exacerbates periodontitis by disrupting IL-33-mediated interaction between periodontal ligament fibroblasts and macrophages Effects of metabolism upon immunity: Targeting myeloid-derived suppressor cells for the treatment of breast cancer is a promising area of study HSPA5-mediated glioma hypoxia tolerance promotes M2 macrophage polarization under hypoxic microenvironment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1