Karolina Banaś, Paweł Lenartowicz, Monika Staś-Bobis, Błażej Dziuk, Dawid Siodłak
{"title":"Insight into the Structure of Antifungal Cyrmenins: Conformational Studies of Unique Dehydroamino Acid, O-Methyldehydroserine.","authors":"Karolina Banaś, Paweł Lenartowicz, Monika Staś-Bobis, Błażej Dziuk, Dawid Siodłak","doi":"10.3390/ijms26010340","DOIUrl":null,"url":null,"abstract":"<p><p>O-Methyldehydroserine, ΔSer(Me), is a non-standard α,β-dehydroamino acid, which occurs naturally in Cyrmenins with potential pharmaceutical application. The C-terminal part and the side chain of the ΔSer(Me) residue constitute the β-methoxyacrylate unit, responsible for antifungal activity of Cyrmenins. The short model, Ac-ΔSer(Me)-OMe, was analyzed considering the geometrical isomer Z (<b>1</b>) and E (<b>2</b>). The Ramachandran diagrams were created for both isomers, using quantum chemical calculations, to show possible conformations for isolated molecules (in vacuo), in weakly polar (chloroform) and polar (water) environments. The Ac-(<i>Z</i>)-ΔSer(Me)-OMe (<b>1</b>) was synthesized and the single-crystal X-ray diffraction analysis together with FT-IR spectra were performed. The detailed analysis of the conformations of the (<i>Z</i>)-ΔSer(Me) residue is presented considering the intra- and intermolecular interactions as well as their influence on the β-methoxyacrylate part. It is concluded that the β-methoxyacrylate structural motif is able to maintain a planar geometry, crucial for biological activity, regardless of the conformation adopted by O-methyldehydroserine.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720591/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26010340","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
O-Methyldehydroserine, ΔSer(Me), is a non-standard α,β-dehydroamino acid, which occurs naturally in Cyrmenins with potential pharmaceutical application. The C-terminal part and the side chain of the ΔSer(Me) residue constitute the β-methoxyacrylate unit, responsible for antifungal activity of Cyrmenins. The short model, Ac-ΔSer(Me)-OMe, was analyzed considering the geometrical isomer Z (1) and E (2). The Ramachandran diagrams were created for both isomers, using quantum chemical calculations, to show possible conformations for isolated molecules (in vacuo), in weakly polar (chloroform) and polar (water) environments. The Ac-(Z)-ΔSer(Me)-OMe (1) was synthesized and the single-crystal X-ray diffraction analysis together with FT-IR spectra were performed. The detailed analysis of the conformations of the (Z)-ΔSer(Me) residue is presented considering the intra- and intermolecular interactions as well as their influence on the β-methoxyacrylate part. It is concluded that the β-methoxyacrylate structural motif is able to maintain a planar geometry, crucial for biological activity, regardless of the conformation adopted by O-methyldehydroserine.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).