{"title":"Homeodomain Involvement in Nuclear HOX Protein Homo- and Heterodimerization.","authors":"Damien Marchese, Laetitia Evrard, Isabelle Bergiers, Ludovic Boas, Justine Duphénieux, Maryse Hermant, Tamara Pringels, Fisnik Zeqiri, Marc Pirson, Jean-Claude Twizere, Françoise Gofflot, René Rezsohazy, Laure Bridoux","doi":"10.3390/ijms26010423","DOIUrl":null,"url":null,"abstract":"<p><p><i>HOX</i> genes play essential roles in patterning the anteroposterior axis of animal embryos and in the formation of various organs. In mammals, there are 39 <i>HOX</i> genes organized into four clusters (HOXA-D) located on different chromosomes. In relationship with their orderly arrangement along the chromosomes, these genes show nested expression patterns which imply that embryonic territories co-express multiple <i>HOX</i> genes along the main body axis. Interactomic database entries, as well as a handful of publications, support that some HOX proteins can form homodimers or interact with other HOX proteins. However, the consequences of HOX protein interactions have been poorly investigated and remain largely elusive. In this study, we compiled a repository of all HOX-HOX interactions from available databases, and taking HOXA1, HOXA2, and HOXA5 as examples, we investigated the capacity of HOX proteins to form homo- and heterodimers. We revealed that while the DNA-binding domain, the homeodomain, is not necessary for HOXA1 homodimerization, the nuclear localization of the dimerization is dependent on the homeodomain, particularly the integrity of the third helix of HOXA1. Furthermore, we demonstrated that HOXA1 can influence the localization of HOXA1 when it is deprived of the homeodomain, increasing its abundance in the chromatin-containing fraction. Moreover, HOXA1 nuclear homodimerization occurs independently of the integrity of the hexapeptide and, consequently, of its well-known interactor, the homeodomain protein PBX. These results hint at a potential involvement of dimerization in the complex landscape of HOX regulatory mechanisms.</p>","PeriodicalId":14156,"journal":{"name":"International Journal of Molecular Sciences","volume":"26 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721573/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Molecular Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/ijms26010423","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
HOX genes play essential roles in patterning the anteroposterior axis of animal embryos and in the formation of various organs. In mammals, there are 39 HOX genes organized into four clusters (HOXA-D) located on different chromosomes. In relationship with their orderly arrangement along the chromosomes, these genes show nested expression patterns which imply that embryonic territories co-express multiple HOX genes along the main body axis. Interactomic database entries, as well as a handful of publications, support that some HOX proteins can form homodimers or interact with other HOX proteins. However, the consequences of HOX protein interactions have been poorly investigated and remain largely elusive. In this study, we compiled a repository of all HOX-HOX interactions from available databases, and taking HOXA1, HOXA2, and HOXA5 as examples, we investigated the capacity of HOX proteins to form homo- and heterodimers. We revealed that while the DNA-binding domain, the homeodomain, is not necessary for HOXA1 homodimerization, the nuclear localization of the dimerization is dependent on the homeodomain, particularly the integrity of the third helix of HOXA1. Furthermore, we demonstrated that HOXA1 can influence the localization of HOXA1 when it is deprived of the homeodomain, increasing its abundance in the chromatin-containing fraction. Moreover, HOXA1 nuclear homodimerization occurs independently of the integrity of the hexapeptide and, consequently, of its well-known interactor, the homeodomain protein PBX. These results hint at a potential involvement of dimerization in the complex landscape of HOX regulatory mechanisms.
期刊介绍:
The International Journal of Molecular Sciences (ISSN 1422-0067) provides an advanced forum for chemistry, molecular physics (chemical physics and physical chemistry) and molecular biology. It publishes research articles, reviews, communications and short notes. Our aim is to encourage scientists to publish their theoretical and experimental results in as much detail as possible. Therefore, there is no restriction on the length of the papers or the number of electronics supplementary files. For articles with computational results, the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material (including animated pictures, videos, interactive Excel sheets, software executables and others).