{"title":"3D Digital Anatomical Models Based on Computed Tomographic Morphometric Analysis of C1 and C2 for Surgical Navigation.","authors":"Wongthawat Liawrungrueang, Watcharaporn Cholamjiak, Peem Sarasombath","doi":"10.3390/jcm14010243","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Injuries involving the Atlas (C1) and Axis (C2) vertebrae of the cervical spine present significant clinical challenges due to their complex anatomy and potential for severe neurological impairment. Traditional imaging methods often lack the detailed visualization required for precise surgical planning. This study aimed to develop high-resolution 3D models of the C1 and C2 vertebrae to perform a comprehensive morphometric analysis, identify gender differences, and assess bilateral symmetry to enhance surgical accuracy. <b>Methods:</b> A retrospective analysis was conducted using CT scans from 500 patients aged 18 and older from a single-center hospital. Three-dimensional models were generated using InVesalius 3.1 and visualized with Meshmixer. Morphometric measurements included screw placement angles, lamina length and height, bicortical diameters, and pedicle widths. Statistical analyses were conducted using SPSS, with the Student's <i>t</i>-test applied for gender and bilateral comparisons. <b>Results:</b> Significant gender differences were found in certain measurements, such as pedicle width (4.85 ± 0.90 mm in males vs. 4.60 ± 0.85 mm in females, <i>p</i> = 0.048) and C2 lamina height (12.90 ± 1.40 mm in males vs. 12.40 ± 1.25 mm in females, <i>p</i> = 0.033). Most measurements exhibited bilateral symmetry, supporting their applicability across genders. These results align with previous studies and highlight the importance of tailored surgical approaches. <b>Conclusions:</b> Three-dimensional models of the C1 and C2 provide comprehensive morphometric data that enhance preoperative planning and surgical precision. Integrating these models into clinical practice can reduce intraoperative risks and improve patient outcomes in cervical spine surgeries.</p>","PeriodicalId":15533,"journal":{"name":"Journal of Clinical Medicine","volume":"14 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722401/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jcm14010243","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Injuries involving the Atlas (C1) and Axis (C2) vertebrae of the cervical spine present significant clinical challenges due to their complex anatomy and potential for severe neurological impairment. Traditional imaging methods often lack the detailed visualization required for precise surgical planning. This study aimed to develop high-resolution 3D models of the C1 and C2 vertebrae to perform a comprehensive morphometric analysis, identify gender differences, and assess bilateral symmetry to enhance surgical accuracy. Methods: A retrospective analysis was conducted using CT scans from 500 patients aged 18 and older from a single-center hospital. Three-dimensional models were generated using InVesalius 3.1 and visualized with Meshmixer. Morphometric measurements included screw placement angles, lamina length and height, bicortical diameters, and pedicle widths. Statistical analyses were conducted using SPSS, with the Student's t-test applied for gender and bilateral comparisons. Results: Significant gender differences were found in certain measurements, such as pedicle width (4.85 ± 0.90 mm in males vs. 4.60 ± 0.85 mm in females, p = 0.048) and C2 lamina height (12.90 ± 1.40 mm in males vs. 12.40 ± 1.25 mm in females, p = 0.033). Most measurements exhibited bilateral symmetry, supporting their applicability across genders. These results align with previous studies and highlight the importance of tailored surgical approaches. Conclusions: Three-dimensional models of the C1 and C2 provide comprehensive morphometric data that enhance preoperative planning and surgical precision. Integrating these models into clinical practice can reduce intraoperative risks and improve patient outcomes in cervical spine surgeries.
期刊介绍:
Journal of Clinical Medicine (ISSN 2077-0383), is an international scientific open access journal, providing a platform for advances in health care/clinical practices, the study of direct observation of patients and general medical research. This multi-disciplinary journal is aimed at a wide audience of medical researchers and healthcare professionals.
Unique features of this journal:
manuscripts regarding original research and ideas will be particularly welcomed.JCM also accepts reviews, communications, and short notes.
There is no limit to publication length: our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.