{"title":"Focused Ultrasound and Microbubble-Mediated Delivery of CRISPR-Cas9 Ribonucleoprotein to Human Induced Pluripotent Stem Cells.","authors":"Kyle Hazel, Davindra Singh, Stephanie He, Zakary Guertin, Mathieu C Husser, Brandon Helfield","doi":"10.1016/j.ymthe.2025.01.013","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR-Cas9 ribonucleoproteins (RNPs) have been heavily considered for gene therapy due to their high on-target efficiency, rapid activity and lack of insertional mutagenesis relative to other CRISPR-Cas9 delivery formats. Genetic diseases such as hypertrophic cardiomyopathy currently lack effective treatment strategies and are prime targets for CRISPR-Cas9 gene editing technology. However, current in-vivo delivery strategies for Cas9 pose risks of unwanted immunogenic responses. This proof-of-concept study aimed to demonstrate that focused ultrasound (FUS) in combination with microbubbles can be used to deliver Cas9-sgRNA (single guide RNA) RNPs and functionally edit human induced pluripotent stem cells (hiPSCs) in-vitro, a model system that can be expanded to cardiovascular research via hiPSC-derived cardiomyocytes. Here, we first determine acoustic conditions suitable for the viable delivery of large proteins to hiPSC with clinical Definity® microbubble agents using our customized experimental platform. From here, we delivered Cas9-sgRNA RNP complexes targeting the EGFP (enhanced green fluorescent protein) gene to EGFP-expressing hiPSCs for EGFP knockout. Simultaneous acoustic cavitation detection during treatment confirmed a strong correlation between microbubble disruption and viable FUS-mediated protein delivery in hiPSCs. This study shows, for the first time, the potential for an FUS-mediated technique for targeted and precise CRISPR-Cas9 gene editing in human stem cells.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.01.013","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CRISPR-Cas9 ribonucleoproteins (RNPs) have been heavily considered for gene therapy due to their high on-target efficiency, rapid activity and lack of insertional mutagenesis relative to other CRISPR-Cas9 delivery formats. Genetic diseases such as hypertrophic cardiomyopathy currently lack effective treatment strategies and are prime targets for CRISPR-Cas9 gene editing technology. However, current in-vivo delivery strategies for Cas9 pose risks of unwanted immunogenic responses. This proof-of-concept study aimed to demonstrate that focused ultrasound (FUS) in combination with microbubbles can be used to deliver Cas9-sgRNA (single guide RNA) RNPs and functionally edit human induced pluripotent stem cells (hiPSCs) in-vitro, a model system that can be expanded to cardiovascular research via hiPSC-derived cardiomyocytes. Here, we first determine acoustic conditions suitable for the viable delivery of large proteins to hiPSC with clinical Definity® microbubble agents using our customized experimental platform. From here, we delivered Cas9-sgRNA RNP complexes targeting the EGFP (enhanced green fluorescent protein) gene to EGFP-expressing hiPSCs for EGFP knockout. Simultaneous acoustic cavitation detection during treatment confirmed a strong correlation between microbubble disruption and viable FUS-mediated protein delivery in hiPSCs. This study shows, for the first time, the potential for an FUS-mediated technique for targeted and precise CRISPR-Cas9 gene editing in human stem cells.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.