{"title":"An ex vivo model of systemically-mediated effects of ozone inhalation on the brain.","authors":"Mercedes Rose, Errol M Thomson","doi":"10.1016/j.tox.2025.154052","DOIUrl":null,"url":null,"abstract":"<p><p>Air pollution is associated with increased risk of neurodegenerative and neuropsychiatric conditions. While animal models have increased our understanding of how air pollution contributes to brain pathologies - including through oxidative stress, inflammatory, and stress hormone pathways - investigation of underlying mechanisms remains limited due to a lack of human-relevant models that incorporate systemic processes. Our objective was to establish an ex vivo approach that enables assessment of the roles of plasma mediators in pollutant-induced effects in the brain. As a proof-of-concept for application in the human context, we assessed whether such effects reproduced in vivo responses to pollutant exposure. Primary rat hippocampal neurons and microglia were each treated with plasma collected from rats immediately or 24 h after ozone inhalation (0 or 0.8 ppm) ± pre-treatment with the glucocorticoid synthesis inhibitor metyrapone. Microglia were further challenged with lipopolysaccharide to evaluate modification of inflammatory responses. Plasma from the ozone-exposed group produced transcriptional changes (inflammatory, antioxidant, glucocorticoid-responsive) in neurons, some of which were glucocorticoid-dependent. Ex vivo and hippocampal responses were strongly correlated, establishing the in vivo relevance of the model. Plasma from the ozone-exposed group modified inflammatory responses to lipopolysaccharide challenge in microglia, demonstrating the model's utility to assess functional changes resulting from pollutant exposure. This study establishes that an ex vivo approach can reproduce ozone-induced effects in the brain. The model was sensitive to specific plasma mediators and temporal effects, and enabled assessment of functional responses. This approach may serve to investigate mechanisms underlying effects of pollutants on the human brain.</p>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":" ","pages":"154052"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tox.2025.154052","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Air pollution is associated with increased risk of neurodegenerative and neuropsychiatric conditions. While animal models have increased our understanding of how air pollution contributes to brain pathologies - including through oxidative stress, inflammatory, and stress hormone pathways - investigation of underlying mechanisms remains limited due to a lack of human-relevant models that incorporate systemic processes. Our objective was to establish an ex vivo approach that enables assessment of the roles of plasma mediators in pollutant-induced effects in the brain. As a proof-of-concept for application in the human context, we assessed whether such effects reproduced in vivo responses to pollutant exposure. Primary rat hippocampal neurons and microglia were each treated with plasma collected from rats immediately or 24 h after ozone inhalation (0 or 0.8 ppm) ± pre-treatment with the glucocorticoid synthesis inhibitor metyrapone. Microglia were further challenged with lipopolysaccharide to evaluate modification of inflammatory responses. Plasma from the ozone-exposed group produced transcriptional changes (inflammatory, antioxidant, glucocorticoid-responsive) in neurons, some of which were glucocorticoid-dependent. Ex vivo and hippocampal responses were strongly correlated, establishing the in vivo relevance of the model. Plasma from the ozone-exposed group modified inflammatory responses to lipopolysaccharide challenge in microglia, demonstrating the model's utility to assess functional changes resulting from pollutant exposure. This study establishes that an ex vivo approach can reproduce ozone-induced effects in the brain. The model was sensitive to specific plasma mediators and temporal effects, and enabled assessment of functional responses. This approach may serve to investigate mechanisms underlying effects of pollutants on the human brain.
期刊介绍:
Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.