{"title":"Gut microbiome-derived metabolites and their impact on gene regulatory networks in gestational diabetes.","authors":"Sarvesh Sabarathinam, Akash Jayaraman, Ramesh Venkatachalapathy","doi":"10.1016/j.jsbmb.2025.106674","DOIUrl":null,"url":null,"abstract":"<p><p>This study explored the therapeutic potential of gut microbiota metabolites in managing Gestational Diabetes Mellitus (GDM). Using network pharmacology, molecular docking, and dynamics simulations, we identified key targets and pathways involved in GDM. We screened 135 gut-derived metabolites, with 8 meeting drug-likeness and pharmacokinetic criteria. Analysis revealed significant overlap with GDM-related targets, including AKT1, IL6, TNF, and STAT3. Functional enrichment analysis highlighted the AGE-RAGE signaling and inflammatory pathways as crucial in GDM pathogenesis. Molecular docking and dynamics simulations showed strong binding affinities and stable interactions between two metabolites, luteolin and naringenin chalcone, and the target protein AKT1. These findings suggest that gut microbiota-derived metabolites, particularly luteolin and naringenin chalcone, may effectively modulate key pathways in GDM, offering promising avenues for novel treatment strategies.</p>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":" ","pages":"106674"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Steroid Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jsbmb.2025.106674","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explored the therapeutic potential of gut microbiota metabolites in managing Gestational Diabetes Mellitus (GDM). Using network pharmacology, molecular docking, and dynamics simulations, we identified key targets and pathways involved in GDM. We screened 135 gut-derived metabolites, with 8 meeting drug-likeness and pharmacokinetic criteria. Analysis revealed significant overlap with GDM-related targets, including AKT1, IL6, TNF, and STAT3. Functional enrichment analysis highlighted the AGE-RAGE signaling and inflammatory pathways as crucial in GDM pathogenesis. Molecular docking and dynamics simulations showed strong binding affinities and stable interactions between two metabolites, luteolin and naringenin chalcone, and the target protein AKT1. These findings suggest that gut microbiota-derived metabolites, particularly luteolin and naringenin chalcone, may effectively modulate key pathways in GDM, offering promising avenues for novel treatment strategies.
期刊介绍:
The Journal of Steroid Biochemistry and Molecular Biology is devoted to new experimental and theoretical developments in areas related to steroids including vitamin D, lipids and their metabolomics. The Journal publishes a variety of contributions, including original articles, general and focused reviews, and rapid communications (brief articles of particular interest and clear novelty). Selected cutting-edge topics will be addressed in Special Issues managed by Guest Editors. Special Issues will contain both commissioned reviews and original research papers to provide comprehensive coverage of specific topics, and all submissions will undergo rigorous peer-review prior to publication.