Phenotypic analysis of complex bioengineered 3D models.

IF 13 1区 生物学 Q1 CELL BIOLOGY Trends in Cell Biology Pub Date : 2025-01-09 DOI:10.1016/j.tcb.2024.12.004
Akhilandeshwari Ravichandran, Vaibhav Mahajan, Tom van de Kemp, Anna Taubenberger, Laura J Bray
{"title":"Phenotypic analysis of complex bioengineered 3D models.","authors":"Akhilandeshwari Ravichandran, Vaibhav Mahajan, Tom van de Kemp, Anna Taubenberger, Laura J Bray","doi":"10.1016/j.tcb.2024.12.004","DOIUrl":null,"url":null,"abstract":"<p><p>With advances in underlying technologies such as complex multicellular systems, synthetic materials, and bioengineering techniques, we can now generate in vitro miniaturized human tissues that recapitulate the organotypic features of normal or diseased tissues. Importantly, these 3D culture models have increasingly provided experimental access to diverse and complex tissues architectures and their morphogenic assembly in vitro. This review presents an analytical toolbox for biological researchers using 3D modeling technologies through which they can find a collation of currently available methods to phenotypically assess their 3D models in their normal state as well as their response to therapeutic or pathological agents.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":" ","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tcb.2024.12.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With advances in underlying technologies such as complex multicellular systems, synthetic materials, and bioengineering techniques, we can now generate in vitro miniaturized human tissues that recapitulate the organotypic features of normal or diseased tissues. Importantly, these 3D culture models have increasingly provided experimental access to diverse and complex tissues architectures and their morphogenic assembly in vitro. This review presents an analytical toolbox for biological researchers using 3D modeling technologies through which they can find a collation of currently available methods to phenotypically assess their 3D models in their normal state as well as their response to therapeutic or pathological agents.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复杂生物工程3D模型的表型分析。
随着基础技术的进步,如复杂的多细胞系统、合成材料和生物工程技术,我们现在可以在体外产生微型化的人体组织,这些组织概括了正常或病变组织的器官类型特征。重要的是,这些3D培养模型越来越多地为多种复杂的组织结构及其体外形态形成组装提供了实验途径。本综述为使用3D建模技术的生物学研究人员提供了一个分析工具箱,通过该工具箱,他们可以找到当前可用方法的整理,以在正常状态下对其3D模型进行表型评估,以及对治疗或病理药物的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Trends in Cell Biology
Trends in Cell Biology 生物-细胞生物学
CiteScore
32.00
自引率
0.50%
发文量
160
审稿时长
61 days
期刊介绍: Trends in Cell Biology stands as a prominent review journal in molecular and cell biology. Monthly review articles track the current breadth and depth of research in cell biology, reporting on emerging developments and integrating various methods, disciplines, and principles. Beyond Reviews, the journal features Opinion articles that follow trends, offer innovative ideas, and provide insights into the implications of new developments, suggesting future directions. All articles are commissioned from leading scientists and undergo rigorous peer-review to ensure balance and accuracy.
期刊最新文献
Metabolic control of replisome plasticity in genome surveillance. Cyclase-associated protein: an actin regulator with multiple neuronal functions. Diverse routes to mitophagy governed by ubiquitylation and mitochondrial import. Endoplasmic reticulum (ER) protein degradation by ER-associated degradation and ER-phagy. Roles of H3K4 methylation in biology and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1